Это задача на вычисление площади фигуры через определенный интеграл 1) Надо построить рисунок фигуры площадь которой надо найти а) Графиком функции y=-x^2+2x -будет являться парабола ветви которой направлены вниз (a<0; a=-1) Координаты вершины параболы x=-2/(2(-1))=1 y(1)=1 Точки пересечения параболы с осью абсцисс, найдем решив квадратное уравнение 2x-x^2=0 x(2-x)=0; x=0 x=2 -это числа будут так же пределами интегрирования, (так как y=0 -уравнение оси абсцисс) Площадь искомой фигуры находится интернированием Интеграл вычислен во вложении. Площадь фигуры 4/3 (eд.кв)
1) Надо построить рисунок фигуры площадь которой надо найти
а) Графиком функции y=-x^2+2x -будет являться парабола ветви которой направлены вниз (a<0; a=-1)
Координаты вершины параболы
x=-2/(2(-1))=1
y(1)=1
Точки пересечения параболы с осью абсцисс, найдем решив квадратное уравнение
2x-x^2=0 x(2-x)=0; x=0 x=2 -это числа будут так же пределами интегрирования, (так как y=0 -уравнение оси абсцисс) Площадь искомой фигуры находится интернированием Интеграл вычислен во вложении. Площадь фигуры 4/3 (eд.кв)
Запишите многочлен 4- ой степени, корнями которого являются числа :
если число а-корень уравнения то х-а=0
воспользовавшись этим свойством составим уравнения
1) - 2,0,2,3
(x+2)(x-0)(x-2)(x-3)=0
x(x-2)(x+2)(x-3)=0
x(x²-4)(x-3)=0
(x²-4)(x²-3x)=0
перемножим скобки
x⁴-4x²-3x³+12x=0
приведем к стандартному виду
x⁴-3x³-4x²+12x=0
2) - 3,-1,1,3
(x+3)(x+1)(x-1)(x-3)=0
(x²-9)(x²-1)=0
x⁴-9x²-x²+9=0
x⁴-10x²+9=0
3) - 3,-1,0,3
(x+3)(x+1)(x-0)(x-3)=0
(x²-9)*x*(x+1)=0
(x²-9)(x²+x)=0
x⁴-9x²+x³-9x=0
x⁴+x³-9x²-9x=0
4) -2,1,2,5
(x+2)(x-1)(x-2)(x-5)=0
(x²-4)(x-1)(x-5)=0
(x²-4)(x²-6x+5)=0
x⁴-4x²-6x³+24x+5x²-20=0
x⁴-6x³+x²+24x-20=0