, всем чем сможете, очень без спама!! 1. Укажите соответствующий вывод для каждого неравенства. Обоснуйте свой ответ.
a) r² - 6x + 9 < 0; b) 2x² + 3x + 620;
c) -x² - 2x +820;
d) x² - 49 > 0.
1) Неравенство не имеет решений
2) Решением неравенства является вся числовая прямая.
3) Решением неравенства является одна точка. 4) Решением неравенства является закрытый промежуток.
5) Решением неравенства является открытый промежуток
6) Решением неравенства является объединение двух промежутков.
2. Неравенство (x - а)(4х + 1)(x - b) > 0 имеет решение (-∞;-5) u(-4;3) Найдите значения а и b.
3. Решите систему неравенств
(x² + 11x +30 2 0,
(4x 10 < 0.
(1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными
ydy=eˣdx/(1+eˣ)
∫ydy=∫eˣdx/(1+eˣ)
y²/2=ln|eˣ+1| + c - общее решение
Можно вместо с взять lnC и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить.
y²/2=lnС(eˣ+1) - общее решение
при у=1 х=0
1/2=ln2C
2C=√e
C=(√e)/2
y²/2=ln((eˣ+1)· (√e)/2) - частное решение
можно умножить на 2
y²=2ln((eˣ+1)· (√e)/2)
или
y²=ln((eˣ+1)²·e/4) - частное решение
b) y`=dy/dx
tgxdy=y㏑ydx - уравнение с разделяющимися переменными
dy/ylny=dx/tgx;
∫dy/ylny=∫dx/tgx;
∫d(lny)/lny=∫d(sinx)/sinx;
ln|lny)=ln|sinx|+lnC;
ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
При y=e x=π/4
ln|lne|=ln|Csin(π/4)|
ln|1|=ln|C√2/2|
1=C√2/2
C=√2
ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
(1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными
ydy=eˣdx/(1+eˣ)
∫ydy=∫eˣdx/(1+eˣ)
y²/2=ln|eˣ+1| + c - общее решение
Можно вместо с взять lnC и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить.
y²/2=lnС(eˣ+1) - общее решение
при у=1 х=0
1/2=ln2C
2C=√e
C=(√e)/2
y²/2=ln((eˣ+1)· (√e)/2) - частное решение
можно умножить на 2
y²=2ln((eˣ+1)· (√e)/2)
или
y²=ln((eˣ+1)²·e/4) - частное решение
b) y`=dy/dx
tgxdy=y㏑ydx - уравнение с разделяющимися переменными
dy/ylny=dx/tgx;
∫dy/ylny=∫dx/tgx;
∫d(lny)/lny=∫d(sinx)/sinx;
ln|lny)=ln|sinx|+lnC;
ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
При y=e x=π/4
ln|lne|=ln|Csin(π/4)|
ln|1|=ln|C√2/2|
1=C√2/2
C=√2
ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.