Подставляем полученное выражение в нижнее уравнение вместо "у":
Раскрываем квадрат разности двух выражений, пользуясь следующей формулой:
Приведём подобные слагаемые. Для этого вынесем общий множитель за скобки:
Выполним сложение в скобке и перенесём слагаемое 13 со знаком минус в левую часть уравнения:
Выполним вычитание:
Разделив все части нижнего уравнения на 6, получим:
Теперь разделим все части нижнего уравнения на 2 для того, чтобы получить приведённое квадратное уравнение:
Решаем нижнее уравнение по теореме Виета. Согласно ей, сумма корней приведённого квадратного уравнения равна коэффициенту при "х", взятому с противоположным знаком, а их произведение — свободному члену:
Минус перед скобкой и минус после скобки дают плюс:
Корнями этой системы являются числа 1/2 и 2.
Мы нашли два значения переменной "х". Теперь подставим каждое из них в верхнее уравнение:
Известно, что график функции f(x) проходит через точку (−5; 3) и параллелен графику функции y = −4x + 3.
а) Найдите уравнение данной функции f(x) ( ).
Графики линейных функций параллельны, если k₁ = k₂, а b₁ ≠ b₂.
k₁ = -4, значит, k₂ = -4;
Вычислить b₂:
Подставить в уравнение известные значения х и у (координаты точки) и вычислить b₂:
3 = -4 * (- 5) + b₂:
3 = 20 + b₂:
3 - 20 = b₂:
b₂ = -17;
Уравнение второй функции:
у = -4х - 17.
б) Постройте график данной функции f(x) ( ).
Построить графики. Графики линейной функции, прямые линии. Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
Объяснение:
Выражаем из верхнего уравнения переменную "у":
Подставляем полученное выражение в нижнее уравнение вместо "у":
Раскрываем квадрат разности двух выражений, пользуясь следующей формулой:
Приведём подобные слагаемые. Для этого вынесем общий множитель за скобки:
Выполним сложение в скобке и перенесём слагаемое 13 со знаком минус в левую часть уравнения:
Выполним вычитание:
Разделив все части нижнего уравнения на 6, получим:
Теперь разделим все части нижнего уравнения на 2 для того, чтобы получить приведённое квадратное уравнение:
Решаем нижнее уравнение по теореме Виета. Согласно ей, сумма корней приведённого квадратного уравнения равна коэффициенту при "х", взятому с противоположным знаком, а их произведение — свободному члену:
Минус перед скобкой и минус после скобки дают плюс:
Корнями этой системы являются числа 1/2 и 2.
Мы нашли два значения переменной "х". Теперь подставим каждое из них в верхнее уравнение:
Мы получили две пары корней:
Они являются решениями системы.
В решении.
Объяснение:
Задание 1.
Известно, что график функции f(x) проходит через точку (−5; 3) и параллелен графику функции y = −4x + 3.
а) Найдите уравнение данной функции f(x) ( ).
Графики линейных функций параллельны, если k₁ = k₂, а b₁ ≠ b₂.
k₁ = -4, значит, k₂ = -4;
Вычислить b₂:
Подставить в уравнение известные значения х и у (координаты точки) и вычислить b₂:
3 = -4 * (- 5) + b₂:
3 = 20 + b₂:
3 - 20 = b₂:
b₂ = -17;
Уравнение второй функции:
у = -4х - 17.
б) Постройте график данной функции f(x) ( ).
Построить графики. Графики линейной функции, прямые линии. Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
y = −4x + 3 у = -4х - 17
Таблицы:
х -1 0 1 х -6 -5 -4
у 7 3 -1 у 7 3 -1
По вычисленным точкам построить графики.