1.(3a-2b)/(2a+3b)при а=-1, b=1 (3·(-1)-2·1)/(2·(-1)+3·1)=(-5)/1=-5. О т в е т. -5. 2.Дробь не имеет смысла, если ее знаменатель равен 0 ( на 0 делить нельзя!) , т.е при 2х-4=0 2х=4 х=2 О т в е т. 3)х=2. 3.Одним из корней уравнения х(х+1)=6 является число х=2, потому что 2·(2+1)=6 - верное равенство. О т в е т. 2)2. 4. (5+2х)-(3х-9)=2; 5+2x-3x+9=2; 2x-3x=2-9-5; -x=-12; x=12. О т в е т. х=12 - корень уравнения (5+2х)-(3х-9)=2.
Інструкція Нaйті область визначення - це перше, що слід робити при роботі з функціями. Це безліч чисел, якому належить аргумент функції, з накладенням деяких обмежень, які випливають з використання в її вираженні певних математичних конструкцій, наприклад, квадратного кореня, дробу, логарифма і т.д. Як правило, всі ці структури можна віднести до шести основних видів і їх всіляких комбінацій. Потрібно вирішити одне або кілька нерівностей, щоб визначити точки, в яких функція не може існувати. Степенева функція з показником ступеня у вигляді дробу з парних знаменником
Це функція виду u ^ (m / n). Очевидно, що подкоренное вираження не може бути негативним, отже, потрібно вирішити нерівність u ≥ 0.
Приклад 1: у = √ (2 • х - 10).
Рішення: складіть нерівність 2 • х - 10 ≥ 0 → х ≥ 5. Область визначення - інтервал [5; + ∞). При х
Логарифмічна функція виду log_a (u)
В даному випадку нерівність буде суворим u> 0, оскільки вираз під знаком логарифма не може бути менше нуля.
Приклад 2: у = log_3 (х - 9).
Рішення: х - 9> 0 → х> 9 → (9; + ∞).
Дріб виду u (х) / v (х)
Очевидно, що знаменник дробу не може звертатися в нуль, значить, критичні точки можна знайти з рівності v (х) = 0.
Приклад 3: у = 3 • х ² - 3 / (х ³ + 8). Рішення: х ³ + 8 = 0 → х ³ = -8 → х = -2 → (- ∞; -2) U (-2; + ∞).
Тригонометричні функції tg u і ctg u
Знайдіть обмеження з нерівності виду х ≠ π / 2 + π • k.
Приклад 4: у = tg (х / 2). Рішення: х / 2 ≠ π / 2 + π • k → х ≠ π • (1 + 2 • k).
Тригонометричні функції arcsin u і arcсos u
Вирішити двостороннє нерівність -1 ≤ u ≤ 1.
Приклад 5: у = arcsin 4 • х. Рішення: -1 ≤ 4 • х ≤ 1 → -1 / 4 ≤ х ≤ 1/4.
Показово-статечні функції виду u (х) ^ v (х)
Область визначення має обмеження у вигляді u> 0.
Приклад 6: у = (х ³ + 125) ^ sinх. Рішення: х ³ + 125> 0 → х> -5 → (-5; + ∞).
(3·(-1)-2·1)/(2·(-1)+3·1)=(-5)/1=-5.
О т в е т. -5.
2.Дробь не имеет смысла, если ее знаменатель равен 0 ( на 0 делить нельзя!) , т.е при 2х-4=0
2х=4
х=2
О т в е т. 3)х=2.
3.Одним из корней уравнения х(х+1)=6 является число х=2, потому что
2·(2+1)=6 - верное равенство.
О т в е т. 2)2.
4. (5+2х)-(3х-9)=2;
5+2x-3x+9=2;
2x-3x=2-9-5;
-x=-12;
x=12.
О т в е т. х=12 - корень уравнения (5+2х)-(3х-9)=2.
5.
-а^(?)b*4a^3b^2*(-8ab^4)=(-1)·4·(-8)a^(?+3+1)·b^(1+2+4)=32a⁴⁺?b⁷
6.
2¹⁴/(2²)³·2⁵=2¹⁴/(2⁶·2⁵)=2¹⁴⁻⁽⁶⁺⁵⁾=2³
Це функція виду u ^ (m / n). Очевидно, що подкоренное вираження не може бути негативним, отже, потрібно вирішити нерівність u ≥ 0.
Приклад 1: у = √ (2 • х - 10).
Рішення: складіть нерівність 2 • х - 10 ≥ 0 → х ≥ 5. Область визначення - інтервал [5; + ∞). При х
Логарифмічна функція виду log_a (u)В даному випадку нерівність буде суворим u> 0, оскільки вираз під знаком логарифма не може бути менше нуля.
Приклад 2: у = log_3 (х - 9).
Рішення: х - 9> 0 → х> 9 → (9; + ∞).
Дріб виду u (х) / v (х)Очевидно, що знаменник дробу не може звертатися в нуль, значить, критичні точки можна знайти з рівності v (х) = 0.
Приклад 3: у = 3 • х ² - 3 / (х ³ + 8).
Тригонометричні функції tg u і ctg uРішення: х ³ + 8 = 0 → х ³ = -8 → х = -2 → (- ∞; -2) U (-2; + ∞).
Знайдіть обмеження з нерівності виду х ≠ π / 2 + π • k.
Приклад 4: у = tg (х / 2).
Тригонометричні функції arcsin u і arcсos uРішення: х / 2 ≠ π / 2 + π • k → х ≠ π • (1 + 2 • k).
Вирішити двостороннє нерівність -1 ≤ u ≤ 1.
Приклад 5: у = arcsin 4 • х.
Показово-статечні функції виду u (х) ^ v (х)Рішення: -1 ≤ 4 • х ≤ 1 → -1 / 4 ≤ х ≤ 1/4.
Область визначення має обмеження у вигляді u> 0.
Приклад 6: у = (х ³ + 125) ^ sinх.
Рішення: х ³ + 125> 0 → х> -5 → (-5; + ∞).