Ввольере инопланетного зверинца оказались вместе драконы двух видов: трехголовые с четырьмя ногами и пятиголовые с шестью ногами. любопытный посетитель зверинца насчитал в этом вольере а голов и в ног. сколько драконов каждого вида было в вольере?
Двое рабочих работая совместно могут выполнить работу за 12 дней. За сколько времени выполнит эту работу второй работник, если он за 3 дня выполняет такую часть работы,как первый за 4 дня.
Вся работа - 1;
х - производительность 1 работника (часть работы в день).
у - производительность 2 работника (часть работы в день).
По условию задачи система уравнений:
(х+у) * 12 = 1
4*х=3*у
1) Найти производительность труда 2 работника.
Выразить х через у во втором уравнении, подставить выражение в первое уравнение и вычислить у:
х= 3у/4
(3у/4 + у) * 12=1
9у + 12у = 1
21у = 1
у = 1/21 - производительность труда 2 работника (такую часть работы он делает за 1 день).
2) Найти количество дней, за которое 2 работник один сделает всю данную работу.
1 : 1/21 = 21 (день) потребуется второму работнику, если он будет работать один.
У=х³ - кубическая функция, графиком явл. кубическая парабола. Свойства функции: 1. Область определения D(х)=(-∞; +∞) 2. Область значения D(y)=(-∞; +∞) 3. f(-x)=(-x)³=-x³=-f(x) - значит функция нечетная 4. f'(x)=(x³)'=2x² 2x²≥0 при любых значениях х, а значит функция является возрастающей. 5. График функции проходит через начало координат х=0 у=0 т.(0;0) 6. График функции располагается в 1 и 4 четверти при х>0 y>0 и в 2 и 3 при x<0 y<0 7. График функции центрально-симметричен относительно точки перегиба, 8. График функции всегда пересекает линию абсцисс хотя бы в одной точке, 9. График функции не имеет общих точек со своей касательной в точке перегиба, кроме как в самой точке касания.
График квадратичной функции y=x2 является парабола. Свойства функции у=х2 1. Если х=0, то у=0, т.е. парабола имеет с осями координат общую точку (0;0) - начало координат 2. Если х≠0, то у>0, т.е. все точки параболы, кроме начала координат, лежат над осью абсцисс. 3. Множеством значений функции у=х2 является промежуток [0; + ∞) 4. Противоположным значениям х соответствует одно и тоже значение у, т.е. если значения аргумента отличаются только знаком, то значения функции равны, график симметричен относительно оси ординат (функция у=х2 - четная). 5. На промежутке [0; + ∞) функция у=х2 возрастает 6. На промежутке (-∞; 0] функция у=х2 убывает 7. Наименьшее (нулевое) значение функция принимает в своей вершине, точке х=0. Наибольшего значения не существует. 8. График симметричен относительно оси Оу. Ось Оу является осью симметрии параболы.
В решении.
Объяснение:
Двое рабочих работая совместно могут выполнить работу за 12 дней. За сколько времени выполнит эту работу второй работник, если он за 3 дня выполняет такую часть работы,как первый за 4 дня.
Вся работа - 1;
х - производительность 1 работника (часть работы в день).
у - производительность 2 работника (часть работы в день).
По условию задачи система уравнений:
(х+у) * 12 = 1
4*х=3*у
1) Найти производительность труда 2 работника.
Выразить х через у во втором уравнении, подставить выражение в первое уравнение и вычислить у:
х= 3у/4
(3у/4 + у) * 12=1
9у + 12у = 1
21у = 1
у = 1/21 - производительность труда 2 работника (такую часть работы он делает за 1 день).
2) Найти количество дней, за которое 2 работник один сделает всю данную работу.
1 : 1/21 = 21 (день) потребуется второму работнику, если он будет работать один.
Свойства функции:
1. Область определения D(х)=(-∞; +∞)
2. Область значения D(y)=(-∞; +∞) 3. f(-x)=(-x)³=-x³=-f(x) - значит функция нечетная
4. f'(x)=(x³)'=2x² 2x²≥0 при любых значениях х, а значит функция является возрастающей.
5. График функции проходит через начало координат х=0 у=0 т.(0;0)
6. График функции располагается в 1 и 4 четверти при х>0 y>0 и в 2 и 3 при x<0 y<0 7. График функции центрально-симметричен относительно точки перегиба,
8. График функции всегда пересекает линию абсцисс хотя бы в одной точке,
9. График функции не имеет общих точек со своей касательной в точке перегиба, кроме как в самой точке касания.
График квадратичной функции y=x2 является парабола.
Свойства функции у=х2
1. Если х=0, то у=0, т.е. парабола имеет с осями координат общую точку (0;0) - начало координат
2. Если х≠0, то у>0, т.е. все точки параболы, кроме начала координат, лежат над осью абсцисс.
3. Множеством значений функции у=х2 является промежуток [0; + ∞)
4. Противоположным значениям х соответствует одно и тоже значение у, т.е. если значения аргумента отличаются только знаком, то значения функции равны, график симметричен относительно оси ординат (функция у=х2 - четная).
5. На промежутке [0; + ∞) функция у=х2 возрастает
6. На промежутке (-∞; 0] функция у=х2 убывает
7. Наименьшее (нулевое) значение функция принимает в своей вершине, точке х=0. Наибольшего значения не существует.
8. График симметричен относительно оси Оу. Ось Оу является осью симметрии параболы.