ответ: х ∈ [ 2; +∞)
Перед нами корень , значит подкоренное выражение должно быть ≥0, кроме того под корнем дробь, значит знаменатель не должен быть равен нулю.
Для знаменателя запишем:
х+3≠0 → х≠ -3,
Теперь числитель ( квадратный трёхчлен) надо представить в виде произведения.
Для этого решим квадратное уравнение ( чилитель приравняем к нулю)
-х²-х+6=0 ; /*(-1) домножим на -1
х²+х-6=0 по теореме Виета корни х₁= -3, х₂=2.
Можем записать квадратный трёхчлен:
-х²-х+6=(х-(-3))(х-2)=(х+3)(х-2)
теперь запишем наши выводы в систему:
ответ: х ∈ [ 2; +∞)
Перед нами корень , значит подкоренное выражение должно быть ≥0, кроме того под корнем дробь, значит знаменатель не должен быть равен нулю.
Для знаменателя запишем:
х+3≠0 → х≠ -3,
Теперь числитель ( квадратный трёхчлен) надо представить в виде произведения.
Для этого решим квадратное уравнение ( чилитель приравняем к нулю)
-х²-х+6=0 ; /*(-1) домножим на -1
х²+х-6=0 по теореме Виета корни х₁= -3, х₂=2.
Можем записать квадратный трёхчлен:
-х²-х+6=(х-(-3))(х-2)=(х+3)(х-2)
теперь запишем наши выводы в систему:
ответ: х ∈ [ 2; +∞)
уравнение x-2 = a|x+3| имеет единственное решение , a -? .
* * * x = -3 ⇒ x -2 =0 ⇔ x =2 , т.е. не может x =3 * * *
1) x < - 3 * * *
x-2 =- a(x+3) ⇔(a+1)x = 2 -3a имеет единственное решение, если a≠ -1
x = (2 -3a) / (a+1) ; причем должно выполнятся (2 -3a) / (a+1) < - 3
(2 -3a) / (a+1) +3 < 0 ⇔ 5/(a+1) < 0 ⇒ a < -1.
2) x > - 3
x-2 = a(x+3) ⇔(1 - a)x = 2 +3a имеет единственное решение, если a≠ 1
x =( 2 +3a ) / (1-a) ; причем должно выполнятся (2 +3a) / (1-a) > -3
(2+3a) / (1-a) +3 > 0 ⇔5 / (1-a) >0 ⇒ a < 1.
1)
( -1) (1)
2)
При a < - 1 два решения
ответ : a ∈ [-1 ; 1) .