Объяснение:
1. 4x²-3x=3(12-x)
4x²-3x-36+3x=0
4x²+0·x+(-36)=0, где
a=4 - старший коэффициент;
b=0 - второй коэффициент;
c=-36 - свободный член.
2. a) -12x²+6x+5=0, числовые коэффициенты a,b,c≠0⇒полное квадратное уравнение;
b) x²=6x; x²-6x+0=0, где c=0⇒неполное квадратное уравнение;
c) -x²-6x+15=0, где a,b,c≠0⇒полное квадратное уравнение;
d) 8x²-9x+1=0, где a,b,c≠0⇒полное квадратное уравнение;
e) 3x+4=-2x²; 2x²+3x+4=0, где a,b,c≠0⇒полное квадратное уравнение.
ответ: вариант B.
3. x²-4x+c=0
a) D=b²-4ac; 0=(-4)²-4·1·c; 0=16-4c; 4c=16; c=16/4=4
b) D=0; x₁=(4-√0)/2=2; x₂=(4+√0)/2=2
4. x²-9x-17=0
По формуле Виета:
x₁+x₂=9
x₁·x₂=-17
x₁²+x₂²=(x₁+x₂)²-2x₁x₂=9²-2·(-17)=81+34=115
Объяснение:
1. 4x²-3x=3(12-x)
4x²-3x-36+3x=0
4x²+0·x+(-36)=0, где
a=4 - старший коэффициент;
b=0 - второй коэффициент;
c=-36 - свободный член.
2. a) -12x²+6x+5=0, числовые коэффициенты a,b,c≠0⇒полное квадратное уравнение;
b) x²=6x; x²-6x+0=0, где c=0⇒неполное квадратное уравнение;
c) -x²-6x+15=0, где a,b,c≠0⇒полное квадратное уравнение;
d) 8x²-9x+1=0, где a,b,c≠0⇒полное квадратное уравнение;
e) 3x+4=-2x²; 2x²+3x+4=0, где a,b,c≠0⇒полное квадратное уравнение.
ответ: вариант B.
3. x²-4x+c=0
a) D=b²-4ac; 0=(-4)²-4·1·c; 0=16-4c; 4c=16; c=16/4=4
b) D=0; x₁=(4-√0)/2=2; x₂=(4+√0)/2=2
4. x²-9x-17=0
По формуле Виета:
x₁+x₂=9
x₁·x₂=-17
x₁²+x₂²=(x₁+x₂)²-2x₁x₂=9²-2·(-17)=81+34=115
2) приравниваем её к нулю и решаем получившееся уравнение
3) Смотрим: какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах данного отрезка;
4) пишем ответ.
Поехали?
1) f'(x) = ((x² -8x)'(x+1) - (x² -8x)(x+1)')/(x+1)²=
((2x-8)(x+1) - (x²-8x))/(x+1)²= (2x² -8x +2x -8 - x² +8x)/(x+1)²=
=(x² +2x -8) / (х+1)²
2)(x² +2x -8) / (х+1)² ⇒ x² +2x -8 =0, ⇒ х = - 4 и х = 2
3) Из найденных корней в указанный промежуток попало х = -4
а) х = -4
f(-4) = (-4)² -8*(-4) /(-4+1) = 48/(-2) = -24
б) х = -5
f(-5) = (-5)² -8*(-5) /(-5+1) = 65/(-4) = -13,75
в) х = -2
f(-2) = (-2)² -8*(-2)/(-2+1) = 20/(-1) = -20
4) maxf(x) = f((-2) = -20
minf(x) = f(-4) = -24