1) y=sin x, y=cos x, x=-5π/4, x=π/4. Заданный отрезок графиками функций разбивается на 2 участка: левая часть - от заданного предела x=-5π/4 до точки встречи графиков, где график функции синуса выше графика косинуса. Направо от этой точки график синуса выше графика косинуса. Это определяет площадь как сумма интегралов разностей функций. Точка встречи - это значение (-π+(π/4)) = -3π/4. . Значения аргумента в заданных пределах: -1.25π = -3.92699, -0.75π = -2.35619, 0.25π = 0.785398. Значения функции синуса в заданных пределах: 0.707107, -0.70711, 0.707107. (это +-√2/2) Значения функции косинуса в заданных пределах: -0.70711, -0.70711, 0.707107. (это +-√2/2) Значения функции косинуса в заданных пределах: Площадь равна 1.414214 + 2.828427 = 4.242641 = 3√2.
2) y=-x^2-2x+4, y=-x^2+4x+1, y=5. Заданный отрезок графиками функций разбивается на 2 участка, граничные точки которых надо определить. Средняя точка - равенство функций y=-x^2-2x+4, y=-x^2+4x+1. -x^2 - 2x + 4 = -x^2 + 4x + 1, 6х = 3, х = 3/6 = 1/2. Левая точка - равенство y=-x^2-2x+4, y=5 -x^2 - 2x + 4 = 5. -x^2 - 2x -1 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-2)^2-4*(-1)*(-1)=4-4*(-1)*(-1)=4-(-4)*(-1)=4-(-4*(-1))=4-(-(-4))=4-4=0; Дискриминант равен 0, уравнение имеет 1 корень: x=-(-2/(2*(-1)))=-(-2/(-2))=-(-(-2/2))=-(-(-1))=-1. Правая точка - равенство y=-x^2+4x+1, y=5. -x^2 + 4x + 1 = 5. -x^2 + 4x - 4 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=4^2-4*(-1)*(-4)=16-4*(-1)*(-4)=16-(-4)*(-4)=16-(-4*(-4))=16-(-(-4*4))=16-(-(-16))=16-16=0; Дискриминант равен 0, уравнение имеет 1 корень: x=-4/(2*(-1))=-4/(-2)=-(-4/2)=-(-2)=2. Линия у = 5 находится выше парабол. Площадь равна:
АВСД - ромб. Через вершину А проведена прямая а параллельна диагонали ВД. Для доказательства используем одно из свойств ромба: его диагонали пересекаются под прямым углом. (Здесь даже не важно под каким углом они пересекаются). Поскольку прямая а и ВД параллельны, а СД пересекает одну из параллельных прямых, то она обязательно пересечет и вторую прямую, т.е. прямую а. Есть теорема: Пусть три прямые лежат в некоторой плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую прямую. Что и требовалось для доказательства.
Заданный отрезок графиками функций разбивается на 2 участка: левая часть - от заданного предела x=-5π/4 до точки встречи графиков, где график функции синуса выше графика косинуса.
Направо от этой точки график синуса выше графика косинуса.
Это определяет площадь как сумма интегралов разностей функций.
Точка встречи - это значение (-π+(π/4)) = -3π/4.
.
Значения аргумента в заданных пределах:
-1.25π = -3.92699,
-0.75π = -2.35619,
0.25π = 0.785398.
Значения функции синуса в заданных пределах:
0.707107, -0.70711, 0.707107. (это +-√2/2)
Значения функции косинуса в заданных пределах:
-0.70711, -0.70711, 0.707107. (это +-√2/2)
Значения функции косинуса в заданных пределах:
Площадь равна 1.414214 + 2.828427 = 4.242641 = 3√2.
2) y=-x^2-2x+4, y=-x^2+4x+1, y=5.
Заданный отрезок графиками функций разбивается на 2 участка, граничные точки которых надо определить.
Средняя точка - равенство функций y=-x^2-2x+4, y=-x^2+4x+1.
-x^2 - 2x + 4 = -x^2 + 4x + 1,
6х = 3,
х = 3/6 = 1/2.
Левая точка - равенство y=-x^2-2x+4, y=5
-x^2 - 2x + 4 = 5.
-x^2 - 2x -1 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*(-1)*(-1)=4-4*(-1)*(-1)=4-(-4)*(-1)=4-(-4*(-1))=4-(-(-4))=4-4=0; Дискриминант равен 0, уравнение имеет 1 корень:
x=-(-2/(2*(-1)))=-(-2/(-2))=-(-(-2/2))=-(-(-1))=-1.
Правая точка - равенство y=-x^2+4x+1, y=5.
-x^2 + 4x + 1 = 5.
-x^2 + 4x - 4 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=4^2-4*(-1)*(-4)=16-4*(-1)*(-4)=16-(-4)*(-4)=16-(-4*(-4))=16-(-(-4*4))=16-(-(-16))=16-16=0; Дискриминант равен 0, уравнение имеет 1 корень:
x=-4/(2*(-1))=-4/(-2)=-(-4/2)=-(-2)=2. Линия у = 5 находится выше парабол.
Площадь равна:
Для доказательства используем одно из свойств ромба: его диагонали пересекаются под прямым углом. (Здесь даже не важно под каким углом они пересекаются).
Поскольку прямая а и ВД параллельны, а СД пересекает одну из параллельных прямых, то она обязательно пересечет и вторую прямую, т.е. прямую а.
Есть теорема:
Пусть три прямые лежат в некоторой плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую прямую.
Что и требовалось для доказательства.