Вычисли для функции y коэффициент касательной k в точке P. y = 3x^2 + x − 1, P(1; 3), коэффициент k равен .
y = 4x^3 − 8x, P(−1; 4), коэффициент k равен .
y = −x^4 + 3x^2 + 3, P(1; 5), коэффициент k равен .
y = −0,5x^2 + 3x + 1, P(0; 1), коэффициент k равен .
y = −x^5 − x − 1, P(1; –3), коэффициент k равен .
№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4
варианта 2 как можно понимать эти выражения (запись в условии немного запутывает):
1.
2.
то есть роли не играет, потому что выражение имеет вид
сначала прибавляем выражение, а потом его вычитаем, ну а единица тут спокойно прибавляется и она в ответе.
upd. оказывается, что выражение, по всей видимости, такое:
если это так, то в условии, конечно, лучше ставить скобки