В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
rahbfwBbdqbqdI
rahbfwBbdqbqdI
03.09.2020 22:15 •  Алгебра

Вычисли тангенс угла наклона касательной, проведённой к графику функций f(x)=(x-9)(x2+9x+81) в точке с абсциссой x0=5

Показать ответ
Ответ:
ГГЧОЧОЧ
ГГЧОЧОЧ
13.10.2020 13:26

Дана функция у = (x-9)(x²+9x+81).

Раскроем скобки: у = х³ - 9х² + 9х² - 81х + 81х - 729 = х³ - 729.

Производная y' = 3х².

y'(5) = 3*5² = 75.

Тангенс угла наклона касательной, проведённой к графику функций f(x)=(x-9)(x²+9x+81) в точке с абсциссой x0=5, равен производной функции в данной точке.

ответ: tg α = 75.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота