Проверенные ответы содержат информацию, которая заслуживает доверия. На «Знаниях» вы найдёте миллионы решений, отмеченных самими пользователями как лучшие, но только проверка ответа нашими экспертами даёт гарантию его правильности.
Начнем с того что такое дробно-рациональное уравнение:
Определение: Дробно рациональное уравнение - рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.
НАПРИМЕР:
МЫ видим что уравнение содержит дробные выражения где переменная х и в Числителе и в Знаменателе дроби.
Теперь попробуем его решить
Для этого приведем дроби к общему знаменателю
Далее выполним сложение дробей
А теперь рассуждаем так: Дроби равны если РАВНЫ и Числители и Знаменатели.
И мы приравниваем числители и решаем уравнение.
Находим корни этого уравнения х=0 или х= -1
И радостно пишем ответ... НО
А куда же мы дели ЗНАМЕНАТЕЛЬ?
Вот так его выкинули? Вот в этом и ошибка.
Мы ОБЯЗАНЫ проверить чтобы эти корни не обращали наш знаменатель в НОЛЬ. Ведь на НОЛЬ делить нельзя!!!
Тут как раз и получился посторонний корень х= -1
Как избежать такой ошибки:
1. Убедиться точно ли перед тобой рациональное уравнение (т.е. оно не содержит корней);
2. Определить ОДЗ (т.е. посмотреть при каких х знаменатель равен НУЛЮ);
3. Найти общий знаменатель дробей и умножить на него обе части уравнения;
4. При равных знаменателях приравнять числители и решить получившееся целое уравнение;
5. Исключить из его корней те, которые обращают в ноль знаменатель дробей.
HoteМодератор
Это Проверенный ответ
×
Проверенные ответы содержат информацию, которая заслуживает доверия. На «Знаниях» вы найдёте миллионы решений, отмеченных самими пользователями как лучшие, но только проверка ответа нашими экспертами даёт гарантию его правильности.
Начнем с того что такое дробно-рациональное уравнение:
Определение: Дробно рациональное уравнение - рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.
НАПРИМЕР:
МЫ видим что уравнение содержит дробные выражения где переменная х и в Числителе и в Знаменателе дроби.
Теперь попробуем его решить
Для этого приведем дроби к общему знаменателю
Далее выполним сложение дробей
А теперь рассуждаем так: Дроби равны если РАВНЫ и Числители и Знаменатели.
И мы приравниваем числители и решаем уравнение.
Находим корни этого уравнения х=0 или х= -1
И радостно пишем ответ... НО
А куда же мы дели ЗНАМЕНАТЕЛЬ?
Вот так его выкинули? Вот в этом и ошибка.
Мы ОБЯЗАНЫ проверить чтобы эти корни не обращали наш знаменатель в НОЛЬ. Ведь на НОЛЬ делить нельзя!!!
Тут как раз и получился посторонний корень х= -1
Как избежать такой ошибки:
1. Убедиться точно ли перед тобой рациональное уравнение (т.е. оно не содержит корней);
2. Определить ОДЗ (т.е. посмотреть при каких х знаменатель равен НУЛЮ);
3. Найти общий знаменатель дробей и умножить на него обе части уравнения;
4. При равных знаменателях приравнять числители и решить получившееся целое уравнение;
5. Исключить из его корней те, которые обращают в ноль знаменатель дробей.
Подробнее - на -
Объяснение:
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.