Ну допустим. 1. Задание с модулями Конечно, решаем графически. Строим график , я думаю, тут легко - смещение на 3 ед. влево по OX, график - "галка". Второй график зависит от параметра и тут рассматриваем 1)a<0. Получается, что график лежит в нижней полуоси, что нам не подходит, точек пересечения не будет 2)a=0. Тогда , корень один, подойдёт. 3)a>0. А вот тут надо внимательно, возможен случай, когда точек пересечения 2, возможен - когда 1 точка. Очевидно, что, нужно, чтобы левая часть "галки" параметрического графика была либо параллельна левой части "галки" y=|x+3| нужно подумать, какой угловой коэффицент у=|x+3| Он равен 1 или -1 в зависимости от значения функции, то у нас a или -a. Мы берем -1 и -a (у "левых" частей так), . В итоге получаем, что a=0, a=1. Иначе (a>1) будут 2 точки пересечения 2. Решим графически, , строим обычную параболу , только сместим её на 3 ед. вправо по OX. Второй график можно построить , посчитать несколько значений, потом сместить график на 4 ед. вправо по OX (он до переноса располагался во 2 и 4 четвертях, так как есть знак "-"). Есть красивый корень x=-2 Все графики в файлах. ответ: 1)a=0, a=1; 2)x=-2
Пусть угол KPD - a, угол MNB - b, а угол MPD - c. a=4(b+c)(по условию), b=c(соответственные углы), a+c=180°(смежные углы). Составляем систему: a+b=180° и a=8b => a+b=180° и a=8b => 8b+b=180° и a=8b => 9b=180° и a=8b => b=20° и a=160° ответ: a=160°, b=20°, c=20°.
Если угол C и угол BDC равны 60°, то и угол DBC равен 60°, следовательно, треугольник BDC - равносторонний, а BC и BD равны 5 см. Если угол BDC равен 60°, а угол ABD равен 30°, то угол ADB равен 120° (как смежный с BDC), а угол BAD равен 30°, следовательно, треугольник ABD - равнобедренный, а AD равно 5 см. AC=5 см + 5 см = 10 см ответ: AC=10 см, AD=5 см.
1. Задание с модулями Конечно, решаем графически. Строим график , я думаю, тут легко - смещение на 3 ед. влево по OX, график - "галка". Второй график зависит от параметра и тут рассматриваем
1)a<0. Получается, что график лежит в нижней полуоси, что нам не подходит, точек пересечения не будет
2)a=0. Тогда , корень один, подойдёт.
3)a>0. А вот тут надо внимательно, возможен случай, когда точек пересечения 2, возможен - когда 1 точка. Очевидно, что, нужно, чтобы левая часть "галки" параметрического графика была либо параллельна левой части "галки" y=|x+3| нужно подумать, какой угловой коэффицент у=|x+3|
Он равен 1 или -1 в зависимости от значения функции, то у нас a или -a. Мы берем -1 и -a (у "левых" частей так), . В итоге получаем, что a=0, a=1. Иначе (a>1) будут 2 точки пересечения
2. Решим графически, , строим обычную параболу , только сместим её на 3 ед. вправо по OX.
Второй график можно построить , посчитать несколько значений, потом сместить график на 4 ед. вправо по OX (он до переноса располагался во 2 и 4 четвертях, так как есть знак "-"). Есть красивый корень x=-2
Все графики в файлах.
ответ: 1)a=0, a=1; 2)x=-2
a=4(b+c)(по условию), b=c(соответственные углы), a+c=180°(смежные углы). Составляем систему: a+b=180° и a=8b => a+b=180° и a=8b => 8b+b=180° и a=8b => 9b=180° и a=8b => b=20° и a=160°
ответ: a=160°, b=20°, c=20°.
Если угол C и угол BDC равны 60°, то и угол DBC равен 60°, следовательно, треугольник BDC - равносторонний, а BC и BD равны 5 см. Если угол BDC равен 60°, а угол ABD равен 30°, то угол ADB равен 120° (как смежный с BDC), а угол BAD равен 30°, следовательно, треугольник ABD - равнобедренный, а AD равно 5 см. AC=5 см + 5 см = 10 см
ответ: AC=10 см, AD=5 см.