В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
натахасуслик
натахасуслик
14.04.2020 11:41 •  Алгебра

Вычислить определённый интеграл от 0 до 4: ∫dx/(3 + √(2x + 1))

Показать ответ
Ответ:
спаркер
спаркер
06.10.2020 07:53
\int\limits^4_0 \frac{dx}{3+\sqrt{2x+1}} =[\; t^2=2x+1\; ,\; x=\frac{t^2-1}{2}\; ,\; dx=\frac{1}{2}\cdot 2t\; dt=t\; dt\; ,\\\\t=\sqrt{2x+1}\; ,\; t_1=\sqrt{2\cdot 0+1}=1\; ,\; t_2=\sqrt{2\cdot 4+1}=3\; ]=\\\\= \int\limits^3_1 \frac{t\; dt}{3+t} = \int\limits^3_1 \frac{(t+3)-3}{t+3}\, dt= \int\limits^3_1\, (1-\frac{3}{t+3})dt=(t-3\cdot ln|t+3|)\Big |_1^3=\\\\=3-3\cdot ln6-(1-3\cdot ln4)=2-3\, ln6+3\, ln4=2-3(ln6-ln4)=\\\\=2-3\, ln\frac{6}{4}=2-3\, ln\frac{3}{2}
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота