Обозначим скорость автомобиля через Х км/ч. До встречи с другим автомобилем он путь Х*1=Х км. Следовательно второй автомобиль путь до встречи 100-Х. Время в пути из города в город первого автомобиля равно 100/Х ч. Время в пути из города в город второго автомобиля равно 100/(100-Х). Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение. 100/Х+5/6=100/(100-Х). После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0. Получаем x^2-340x+12000=0 Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч. Скорость второго - 30 км/ч
1521+858+11^2
1521+858+121 степень вычеслили .
Вычисляем сумму положительных чисел :
1521+8558+121 =2500 ответ : 2500
2) 961-15^2 делим на 39^2 -49
961 - 15^2
-49
39^2
Cокращаем дробь на 3^2
961 - 15^2
- 49
39^2
961- 5^2
-49
13^2
961 - 5^2
-49
13^2
961- 25
-49
13^2
961 - 25
-49
169
912 - 25
169
912 - 25
169
Вычисляем сумму или разность
154103
- ответ
169
До встречи с другим автомобилем он путь Х*1=Х км.
Следовательно второй автомобиль путь до встречи 100-Х.
Время в пути из города в город первого автомобиля равно 100/Х ч.
Время в пути из города в город второго автомобиля равно 100/(100-Х).
Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение.
100/Х+5/6=100/(100-Х).
После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0.
Получаем x^2-340x+12000=0
Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч.
Скорость второго - 30 км/ч