В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Ученик132312
Ученик132312
12.04.2022 13:29 •  Алгебра

Вычислите площадь фигуры ограниченной линиями у=х^2; y=4

Показать ответ
Ответ:
jessicagallagher
jessicagallagher
27.05.2020 18:11

1 находим точки пересечения кривых

x^2=4\\ x_{1,2}=\pm 2

Плошадь искомой фигуры - разность площадей примоугольника ограниченного у=4, осью х и перпендикулярями их точки пересечения (х1=-2, х2=2) и ограниченного кривой у=х^2, осью х и перпендикулярами в точках х1=-2, х2=2

Площадь прямоугольника. S=a*b, длина а=2+2=4 (по оси х), b=4 (по оси у)

S=4*4=16

2.площаль фигуры ограниченной у=х^2

\int\limits_{-2}^2 {x^2} \, dx =\frac{1}{3}x^3|_{-2}^2=\frac{1}{3}2^3-\frac{1}{3}(-2)^3=\\ \frac{8}{3}+\frac{8}{3}=\frac{16}{3}

3. находим разность S=16-\frac{16}{3}=\frac{32}{3}=10\frac{2}{3}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота