1) Зная о том, что периметр прямоугольника равен 54, можем составить уравнение: 2(x+7)+ 2x = 54 4х +14=54 4х=40 х=10 x+7=17 Сказано, разность сторон 7см, следовательно одна сторона больше другой на 7 см. Пусть 1-ая сторона х тогда (х+7)- 2-ая сторона Можно составить уравнение: (х+(х+7))*2=54 (2х+7)*2=54 4х+14=54 4х=40 х=10см - 1-ая сторона 10+7=17см - 2-ая сторона ответ: 10см и 17см
2) Пусть собственная скорость - х км/ч, а скорость течения - у км/ч, тогда
Пусть N- 600 член последовательности. m^2-последний квадрат до N. k^3-последний куб до N,а f^6-последнее число до N являющее квадратом и кубом одновременно. Тогда верно соотношение: N-(m+k-f)=600. Условимся ограничить поиск N в области трехзначных чисел. (Ясно что такое N единственно) Ясно,что k<10 (10^3=1000) f<4 (4^6= 4096. Значит :k-f<=8. Тк 32^2>100,то наибольшее значение : m+k-f=39 для треxзначного N. Тогда область поиска N ограничено интервалом: 600 -639. Для любого N лежащего в этом интервале: m^2=25^2или m=24^2 ; k^3=8^3=512; f^6=2^6=64. Тогда можно сразу же найти N:(2 варианта) 1)N=600+(24+8-2)=630>25^2 значит m=25(противоречие) 2)N=600+(25+8-2)=631 (верно) ответ :631
1)
Зная о том, что периметр прямоугольника равен 54, можем составить уравнение:
2(x+7)+ 2x = 54
4х +14=54
4х=40
х=10
x+7=17 Сказано, разность сторон 7см, следовательно одна сторона больше другой на 7 см.
Пусть 1-ая сторона х
тогда (х+7)- 2-ая сторона
Можно составить уравнение: (х+(х+7))*2=54
(2х+7)*2=54
4х+14=54
4х=40
х=10см - 1-ая сторона
10+7=17см - 2-ая сторона
ответ: 10см и 17см
2) Пусть собственная скорость - х км/ч, а скорость течения - у км/ч, тогда
4(х+у)=60
6(х-у)=60
4х+4у=60
6х-6у=60
4х=4у=60
4х=60-4у|/4
х=15-у
6(15-у)-6у=60
90-6у-6у=60
-6у-6у=60-90
-12у=-30
у=-30/-12
у=2.5
х=15-2.5
х=12.5
ответ: собственная скорость=12.5км/ч, а скорость течения 2.5км/ч.
N-(m+k-f)=600.
Условимся ограничить поиск N в области трехзначных чисел. (Ясно что такое N единственно)
Ясно,что k<10 (10^3=1000) f<4 (4^6=
4096. Значит :k-f<=8. Тк 32^2>100,то наибольшее значение : m+k-f=39 для треxзначного N. Тогда область поиска N ограничено интервалом: 600 -639. Для любого N лежащего в этом интервале: m^2=25^2или m=24^2 ; k^3=8^3=512; f^6=2^6=64. Тогда можно сразу же найти N:(2 варианта) 1)N=600+(24+8-2)=630>25^2 значит m=25(противоречие) 2)N=600+(25+8-2)=631 (верно) ответ :631