ОДЗ: система: -11tgx ≥ 0
x∋ (-π/2 + πn; π/2 + πn)
Произведение равно нулю, когда хотя бы один из множителей равен нулю, а второй при этом существует.
2cos²x - cosx = 0
⇒ (2cos²x - cosx)√(-11tgx) = 0 ⇔ система:
-11tgx = 0
Решим первое уравнение системы:
2cos²x - cosx = 0 ⇔ cosx (2cosx - 1) = 0 ⇔ система: cosx = 0 ⇔ cosx = 0 ⇔
2cosx - 1 = 0 cosx = 1/2
система: x = π/2 + πn, n∋Z
x = ±π/3 + 2πn, n∋Z.
решим второе уравнение системы:
-11tgx = 0 ⇔ tgx = 0 ⇒ x = πn, n ∈Z.
x = π/2 + πn, n∋Z - не удовлетворяет ОДЗ: x∋ (-π/2 + πn; π/2 + πn) .
⇒ ответ: ±π/3 + 2πn, n∋Z.; πn, n ∈Z.
ответ: хЄ (- ∞ ; 1 ] .
Объяснение:
( x - 1 )| x² + 1 | + | x - 1 |( x² + 1 ) = 0 ;
( x - 1 )( x² + 1 ) + | x - 1 |( x² + 1 ) = 0 ;
( x² + 1 )( x - 1 + | x - 1 | ) = 0 ;
x² + 1 ≠ 0 або x - 1 + | x - 1 | = 0 ;
розв"язуємо останнє рівняння :
| x - 1 | = - х + 1 ;
вираз під модулем дорівнює 0 при х = 1 .
1) х ≤ 1 , тоді - ( x - 1 ) = - ( x - 1 ) ; правильна рівність при хЄ (- ∞ ; 1 ] ;
2) x > 1 , тоді x - 1 = - х + 1 ; > 2x = 2 ; > x = 1 ∉ ( 1 ; + ∞ ) .
В - дь : хЄ (- ∞ ; 1 ] .
ОДЗ: система: -11tgx ≥ 0
x∋ (-π/2 + πn; π/2 + πn)
Произведение равно нулю, когда хотя бы один из множителей равен нулю, а второй при этом существует.
2cos²x - cosx = 0
⇒ (2cos²x - cosx)√(-11tgx) = 0 ⇔ система:
-11tgx = 0
Решим первое уравнение системы:
2cos²x - cosx = 0 ⇔ cosx (2cosx - 1) = 0 ⇔ система: cosx = 0 ⇔ cosx = 0 ⇔
2cosx - 1 = 0 cosx = 1/2
система: x = π/2 + πn, n∋Z
x = ±π/3 + 2πn, n∋Z.
решим второе уравнение системы:
-11tgx = 0 ⇔ tgx = 0 ⇒ x = πn, n ∈Z.
x = π/2 + πn, n∋Z - не удовлетворяет ОДЗ: x∋ (-π/2 + πn; π/2 + πn) .
⇒ ответ: ±π/3 + 2πn, n∋Z.; πn, n ∈Z.
ответ: хЄ (- ∞ ; 1 ] .
Объяснение:
( x - 1 )| x² + 1 | + | x - 1 |( x² + 1 ) = 0 ;
( x - 1 )( x² + 1 ) + | x - 1 |( x² + 1 ) = 0 ;
( x² + 1 )( x - 1 + | x - 1 | ) = 0 ;
x² + 1 ≠ 0 або x - 1 + | x - 1 | = 0 ;
розв"язуємо останнє рівняння :
| x - 1 | = - х + 1 ;
вираз під модулем дорівнює 0 при х = 1 .
1) х ≤ 1 , тоді - ( x - 1 ) = - ( x - 1 ) ; правильна рівність при хЄ (- ∞ ; 1 ] ;
2) x > 1 , тоді x - 1 = - х + 1 ; > 2x = 2 ; > x = 1 ∉ ( 1 ; + ∞ ) .
В - дь : хЄ (- ∞ ; 1 ] .