Решение a) Пусть ε > 0. Требуется поэтому ε найти такое δ > 0, чтобы из условия 0 < |x − x0| < δ, т.е. из 0 < |x - 0| < δ вытекало бы неравенство |f(x) − A| < ε, т.е. |3x - 2 − (- 2)| < ε. Последнее неравенство приводится к виду |3(x )| < ε, т.е. |x | < (1/3)* ε. Отсюда следует, что если взять δ = ε/3 , то неравенство 0 < |x | < δ будет автоматически влечь за собой неравенство |3x - 2 − (- 2)| < ε. По определению это и означает, что lim x→ −2 (3x - 2) = −2
(x-3)(x+3)-3x(4-x) = x² - 3² - 3x*4 -3x*(-x) =
= x² - 9 - 12x + 3x² = (x² +3x²) - 12x - 9 =
= 4x² - 12x - 9
-4y(y+2) +(y - 5)² = -4y *y - 4y * 2 + y² - 2*y*5 + 5² =
= -4y² - 8y + y² - 10y + 25 = (-4y² + y²) -(8y + 10y) + 25 =
= -3y² - 18y + 25
2(a-3)²-2a² = 2(a² - 2*a*3 + 3²) - 2a² = 2a² - 12a +18 - 2a² =
= - 12a + 18
2.
x⁴ - 16x² = x²(x² - 16) = x²(x² - 4²) =x²(x-4)(x+4)
-4x²-8xy -4y² = - 4(x² +2xy +y²) = -4(x+y)² = -4(x+y)(x+y)
3.
(x-5)(x² - 4x +25) - x(x² + 3) = x³ - 4x²+25x -5x²+20x -125 - x³ -3x =
= (x³ - x³) - (4x² +5x²) +(25x +20x - 3x) - 125 =
= - 9x² + 42x - 125
при x= -2
- 9 *(-2)² + 42*(-2) - 125 = -36 - 84 - 125 = -245
a) Пусть ε > 0. Требуется поэтому ε найти такое δ > 0, чтобы
из условия 0 < |x − x0| < δ, т.е. из 0 < |x - 0| < δ
вытекало бы неравенство |f(x) − A| < ε, т.е. |3x - 2 − (- 2)| < ε.
Последнее неравенство приводится к виду |3(x )| < ε, т.е. |x | < (1/3)* ε. Отсюда следует, что если взять δ = ε/3 , то неравенство 0 < |x | < δ
будет автоматически влечь за собой неравенство |3x - 2 − (- 2)| < ε.
По определению это и означает, что lim x→ −2 (3x - 2) = −2