Найти промежутки возрастания и убывания функции, а также точки максимума и минимума. y= x^2*ln(x) Функция определена при всех х>0 Найдем производную функции y' =(x^2*ln(x))' = (x^2)' *ln(x)+x^2*(ln(x))' = 2x*ln(x) +x^2(1/x) = = x(2ln(x)+1) Найдем критические точки y' =0 или x(2ln(x)+1) =0 2ln(x)+1 = 0 или ln(х) =-1/2 x = e^(-1/2) =1/e^(1/2) =0,606 На числовой оси отобразим знаки производной ..-.. 0+... !! 00,606 Поэтому функция возрастает если х принадлежит (0,606;+бесконечн) Функция убывает если х принадлежит (0;0,606) В точке х=0,606 функция имеет локальный минимум y( e^(-1/2) ) = (e^(-1/2))^2*ln( e^(-1/2)) =e^(-1) *(-1/2) =-1/(2*e) = -0,18 Локального максимума функция не имеет
х^2-6х-2х+12-5=0
х^2-8х+7=0
D=(-8)^2-4*1*7=64-28=36>0, 2 корня
х1=8-корень из 36 дробная черта 2=8-6 дробная черта 2=1
х2=8+корень из 36 дробная черта 2=8+6 дробная черта 2=7
ответ: х1=1; х2=7
3) (х-3)^2=5-x
х^2-2*х*3+3^2=5-х
х^2-6х+9-5+х=0
х^2-5х+4=0
D=25-4*1*4=25-16=9
х1=5-3 дробная черта 2=1
х2=5+3 дробная черта 2= 4
ответ: х1=1; х2=4
4 )6х-20=(х-6)^2
6х-20= х^2-12х+36
6х-20-х^2+12х-36=0
-х^2+18х-56=0
D=324-4*(-1)*(-56)=324-224=100
х1=-18-10 дробная черта -2=14
х2=-18+10 дробная черта -2=4
ответ: х1=14; х2=4
Функция определена при всех х>0
Найдем производную функции
y' =(x^2*ln(x))' = (x^2)' *ln(x)+x^2*(ln(x))' = 2x*ln(x) +x^2(1/x) =
= x(2ln(x)+1)
Найдем критические точки
y' =0 или x(2ln(x)+1) =0
2ln(x)+1 = 0 или ln(х) =-1/2
x = e^(-1/2) =1/e^(1/2) =0,606
На числовой оси отобразим знаки производной
..-.. 0+...
!!
00,606
Поэтому функция возрастает если
х принадлежит (0,606;+бесконечн)
Функция убывает если
х принадлежит (0;0,606)
В точке х=0,606 функция имеет локальный минимум
y( e^(-1/2) ) = (e^(-1/2))^2*ln( e^(-1/2)) =e^(-1) *(-1/2) =-1/(2*e) = -0,18
Локального максимума функция не имеет