* * * * * * * * * * * * * * * * * * * * * * *
Решить уравнение |x-2| - |x-3| +|2x -8| = x
ответ: { 3 ; 7 }
Объяснение: |x-2| - |x-3| +|2x -8| =x ⇔ |x-2| - |x-3| +2|x - 4| =x
а) x < 2 иначе x ∈ (- ∞ ;2)
-(x-2)+ (x-3) - 2(x - 4) = x ⇔ 3x =7 ⇔ x = 7/3 ∉ (- ∞ ;2) * * * 7/3> 2 * * * ;
б) 2 ≤ x < 3 иначе x ∈ [2 ;3)
(x-2)+ (x-3) - 2(x - 4) = x ⇔ x = 3 ∉ [2 ;3) ;
в) 3 ≤ x < 4 иначе x ∈ [3 ;4)
(x-2)- (x-3) - 2(x - 4) = x ⇔ x = 3 ;
г) x ≥ 4 иначе x ∈ [4 ;∞)
(x-2) - (x-3) + 2(x - 4) = x ⇔ x=7 .
Составляем системы уравнений во всех случаях:
a)
m + n = 4
mn = 4
(Шаг 1) Выражаем в первом уравнении m через n и подставляем во второе:
m = 4 - n
(4 - n)n = 4
(Шаг 2) Теперь работаем со вторым уравнением:
-n² + 4n - 4 = 0 | * -1
n² - 4n + 4 = 0
D = 16 - 16 = 0
n = 4/2 = 2
(Шаг 3) Подставляем получившийся корень (если D > 0, то корней будет 2, подставляем оба и получаем две пары решений) в первое уравнение системы:
m = 4 - 2
m = 2
ответ: m = 2; n = 2.
b)
m + n = -5
mn = 6
Шаг 1:
m = -5 - n
(-5 - n)n = 6
Шаг 2:
-5n - n² - 6 = 0 | * -1
n² + 5n + 6 = 0
D = 25 - 24 = 1
n1 = (-5 + 1)/2 = -2
n2 = (-5 - 1)/2 = -3
Шаг 3:
m1 = -5 - (-2)
m1 = -5 + 2
m1 = -3
m2 = -5 - (-3)
m2 = -5 + 3
m2 = 2
ответ: m1 = -3; n1 = -2; m2 = -2; n2 = -3
Таким же образом решаются следующие два уравнения.
* * * * * * * * * * * * * * * * * * * * * * *
Решить уравнение |x-2| - |x-3| +|2x -8| = x
ответ: { 3 ; 7 }
Объяснение: |x-2| - |x-3| +|2x -8| =x ⇔ |x-2| - |x-3| +2|x - 4| =x
а) x < 2 иначе x ∈ (- ∞ ;2)
-(x-2)+ (x-3) - 2(x - 4) = x ⇔ 3x =7 ⇔ x = 7/3 ∉ (- ∞ ;2) * * * 7/3> 2 * * * ;
б) 2 ≤ x < 3 иначе x ∈ [2 ;3)
(x-2)+ (x-3) - 2(x - 4) = x ⇔ x = 3 ∉ [2 ;3) ;
в) 3 ≤ x < 4 иначе x ∈ [3 ;4)
(x-2)- (x-3) - 2(x - 4) = x ⇔ x = 3 ;
г) x ≥ 4 иначе x ∈ [4 ;∞)
(x-2) - (x-3) + 2(x - 4) = x ⇔ x=7 .
Составляем системы уравнений во всех случаях:
a)
m + n = 4
mn = 4
(Шаг 1) Выражаем в первом уравнении m через n и подставляем во второе:
m = 4 - n
(4 - n)n = 4
(Шаг 2) Теперь работаем со вторым уравнением:
-n² + 4n - 4 = 0 | * -1
n² - 4n + 4 = 0
D = 16 - 16 = 0
n = 4/2 = 2
(Шаг 3) Подставляем получившийся корень (если D > 0, то корней будет 2, подставляем оба и получаем две пары решений) в первое уравнение системы:
m = 4 - 2
m = 2
ответ: m = 2; n = 2.
b)
m + n = -5
mn = 6
Шаг 1:
m = -5 - n
(-5 - n)n = 6
Шаг 2:
-5n - n² - 6 = 0 | * -1
n² + 5n + 6 = 0
D = 25 - 24 = 1
n1 = (-5 + 1)/2 = -2
n2 = (-5 - 1)/2 = -3
Шаг 3:
m1 = -5 - (-2)
m1 = -5 + 2
m1 = -3
m2 = -5 - (-3)
m2 = -5 + 3
m2 = 2
ответ: m1 = -3; n1 = -2; m2 = -2; n2 = -3
Таким же образом решаются следующие два уравнения.