Выпишите первые пять член последовательности (аn), если: а) а = 1, аn1 = a + 1; б) а = 1000, аn+1 = 0,1а; в) а = 16, аn+1 = -0,5а; г) а = 3, an+1 = а.
Такі функції мають вигляд : y=kx+m- пряма k-кутовий коефіцієнт В умові задачі нам дана арифметична прогресія, усі члени якої є натуральними, двоцифровим числами , які кратні числу 4
Перший член цієї прогресії - 12 (так як число 12 є двоцифровим і ділиться на 4 без залишку)
Другий член цієї прогресії - 16 (16=4*4)
знайдемо різницю арифметичної прогресії. 16-12=4 d=4 Тепер необхідно знайти число, яке менше від 41 і ділиться на 4. Це число 40 (40=4*10)
Найдемо суму членів ап
- перший член - у даному випадку останній член (40)
2tg^2(x) + tgx - 3 = 0
D = 1 + 24 = 25
tgx = -1.5, x = -arctg(1.5) + πk, k∈Z
tgx = 1, x = π/4 + πk, k∈Z
Найдем корни x1, x2, которые принадлежат интервалу (0;π)
0 < -arctg(1.5) + πk < π
arctg(1.5)/π < k < 1 + (arctg(1.5)/π), k∈Z
k = 1, x1 = -arctg(1.5) + π
0 < π/4 + πk < π
-0.25 < k < 0.75, k∈Z
k = 0, x2 = π/4
Найдем теперь 5tg(x1+x2) = 5tg(π/4 + π - arctg(1.5)) = 5tg(π/4 - arctg(1.5)) = 5*(tg(π/4) -tg(arctg(1.5))/(1 + tg(π/4)*tg(arctg(1.5))) = 5*(1 - 1.5)/(1 + 1.5) = -5*0.5/2.5 = -1
k-кутовий коефіцієнт
В умові задачі нам дана арифметична прогресія, усі члени якої є натуральними, двоцифровим числами , які кратні числу 4
Перший член цієї прогресії - 12 (так як число 12 є двоцифровим і ділиться на 4 без залишку)
Другий член цієї прогресії - 16 (16=4*4)
знайдемо різницю арифметичної прогресії.
16-12=4
d=4
Тепер необхідно знайти число, яке менше від 41 і ділиться на 4.
Це число 40 (40=4*10)
Найдемо суму членів ап
- перший член
- у даному випадку останній член (40)
k=-208