На складе стеклотары хранятся банки емкостью 0,5 л, 0,7 л и 1 л. Сейчас на складе 2500 банок общей емкостью 2000 л. Докажите, что на складе есть хотя бы одна 0,5 литровая банка.
Пусть банки по 0.5 л - x; по 0.7 л - y; по 1 л - z. Составим систему уравнений:
Допустим, что банки по 0.5л отсутствуют. Тогда x = 0. Попробуем решить систему:
Умножаем второе уравнение на 0,7:
0.3z=250
z = 250 : 0,3
Целочисленного решения данной системы не существует. Учитывая, что 1 банка = 1 единице утверждение отсутствия банок емкостью 0.5 л ложно! А значит, есть хотя бы одна 0.5 литровая банка.
1. Пускай х - скорость катера. По течению реки катер потратил время 21/(х+2). Против течения 10/(х-2). Всего потратил (21/(х+2))+(10/(х-2))=2,5 часов. (21×(х-2)+10×(х+2))/((х+2)×(х-2))=2,5. 21х-42+10х+20=2,5×(х^2-4), 31х-22=2,5х^2-10, 2,5х^2-31х+12=0, D=(-31)^2-4×2,5×12=961-120=841. x1=(31- корень с 841)/(2×2,5)=(31-29)/5=0,4. х2=(31+корень с 841)/(2×2,5)=(31+29)/5=12. Результат х1=0,4 не имеет решения задачи, так как скорость меньше скорости реки. ответ: скорость катера 12 км/ч. 2. Пускай х^2-7=0. Тогда х^2=7, х1= - корень из 7, х2= + корень из 7. Пускай 2х-5=0. Тогда 2х=5, х3=2,5. Корень из 7 равен 2,64575 - это и будет наибольший корень уравнения.
На складе стеклотары хранятся банки емкостью 0,5 л, 0,7 л и 1 л. Сейчас на складе 2500 банок общей емкостью 2000 л. Докажите, что на складе есть хотя бы одна 0,5 литровая банка.
Пусть банки по 0.5 л - x; по 0.7 л - y; по 1 л - z. Составим систему уравнений:
Допустим, что банки по 0.5л отсутствуют. Тогда x = 0. Попробуем решить систему:
Умножаем второе уравнение на 0,7:
0.3z=250
z = 250 : 0,3
Целочисленного решения данной системы не существует. Учитывая, что 1 банка = 1 единице утверждение отсутствия банок емкостью 0.5 л ложно! А значит, есть хотя бы одна 0.5 литровая банка.
Ч.Т.Д