Так как НОД(a + 5, a) делит также и разность (a + 5) – a = 5, то он может равняться только 5 или 1. То же верно и для HOД(b, b + 5).
Заметим, что НОД(a, a + 5) = 5 тогда и только тогда, когда НОК(a, a + 5) делится на 5. Поэтому из равенства НОК(a, a + 5) = HOK(b, b + 5) следует равенство НОД(a, a + 5) = HOД(b, b + 5), а значит, и равенство a(a + 5) = b(b + 5) (как известно, НОК(m, n)·НОД(m, n) = mn. Теперь ясно, что a = b (если, например, a < b, то a + 5 < b + 5 и a(a + 5) < b(b + 5). Противоречие.)
Второй См. б).
б) Предположим, что такие числа существуют. Можно считать, что HOД(a, b, c) = 1 (в противном случае все числа можно сократить на общий делитель).
Обозначим m = HOK(a + c, b + c), d = HOД(a + c, b + c). Так как HOK(a + c, b + c) = НОК(a, b) ≤ ab < (a + c)(b + c), то d > 1. ab делится на m, а m, в свою очередь, делится на d, то есть ab делится на d. Поэтому либо a, либо b (пусть a) имеет общий делитель δ > 1 с числом d. Но тогда числа
c = (a + c) – a и b = (b + c) – c также делятся на δ. Мы получили противоречие с условием HOД(a, b, c) = 1.
3) Из точки H восстанавливаем перпендикуляр к линии основания: прикладываем к этой точке прямоугольный треугольник и проводим линию, перпендикулярную основанию.
4) На линии перпендикуляра от точки H откладываем отрезок h (линейкой измеряем его длину и откладываем о токи H).
Конечную точку обозначаем C.
5) Прикладываем циркуль к отрезку b и фиксируем "раствор циркуля" - расстояние между его иголкой и грифелем.
6) Раствором циркуля, равным b, проводим дугу из точки С до пересечения с линией основания. Эту точку пересечения обозначаем А.
7) Прикладываем циркуль к отрезку с и фиксируем длину с.
8) Раствором циркуля длиной, равной отрезку с, делаем засечки из точки А влево и вправо. Полученные точки обозначаем В₁ и В₂.
Так как НОД(a + 5, a) делит также и разность (a + 5) – a = 5, то он может равняться только 5 или 1. То же верно и для HOД(b, b + 5).
Заметим, что НОД(a, a + 5) = 5 тогда и только тогда, когда НОК(a, a + 5) делится на 5. Поэтому из равенства НОК(a, a + 5) = HOK(b, b + 5) следует равенство НОД(a, a + 5) = HOД(b, b + 5), а значит, и равенство a(a + 5) = b(b + 5) (как известно, НОК(m, n)·НОД(m, n) = mn. Теперь ясно, что a = b (если, например, a < b, то a + 5 < b + 5 и a(a + 5) < b(b + 5). Противоречие.)
Второй См. б).
б) Предположим, что такие числа существуют. Можно считать, что HOД(a, b, c) = 1 (в противном случае все числа можно сократить на общий делитель).
Обозначим m = HOK(a + c, b + c), d = HOД(a + c, b + c). Так как HOK(a + c, b + c) = НОК(a, b) ≤ ab < (a + c)(b + c), то d > 1. ab делится на m, а m, в свою очередь, делится на d, то есть ab делится на d. Поэтому либо a, либо b (пусть a) имеет общий делитель δ > 1 с числом d. Но тогда числа
c = (a + c) – a и b = (b + c) – c также делятся на δ. Мы получили противоречие с условием HOД(a, b, c) = 1.
ответ
б) Не могут.
Объяснение:
Потому что в (б) не могу
См. Объяснение.
Объяснение:
1) Сначала проводим линию основания.
2) На ней откладываем точку H.
3) Из точки H восстанавливаем перпендикуляр к линии основания: прикладываем к этой точке прямоугольный треугольник и проводим линию, перпендикулярную основанию.
4) На линии перпендикуляра от точки H откладываем отрезок h (линейкой измеряем его длину и откладываем о токи H).
Конечную точку обозначаем C.
5) Прикладываем циркуль к отрезку b и фиксируем "раствор циркуля" - расстояние между его иголкой и грифелем.
6) Раствором циркуля, равным b, проводим дугу из точки С до пересечения с линией основания. Эту точку пересечения обозначаем А.
7) Прикладываем циркуль к отрезку с и фиксируем длину с.
8) Раствором циркуля длиной, равной отрезку с, делаем засечки из точки А влево и вправо. Полученные точки обозначаем В₁ и В₂.
9) Соединяем построенные точки прямыми линиями.
Построение закончено.