Выполнить действия. всего примеров 4 по порядку если можно за ранее 1-ый пример 7,8 х 4/13 - 61,5 : 13 2/3 +198,8 2-ой пример 19,25 х 5/11 + 5,76 х 5/12 - 13,009 3-ий пример 4,625 х 2 2/15 : 2,69 - 2 4/7 4-ый пример 30,25 : 4 5/7 : 1,05 - 2 1/6
Уравнение квадратичной функции в общем виде y=ax²+bx+c. Если функция проходит через заданные точки, то они должны удовлетворять этой функции: точка (0;3) _ a0²+b0+c=3; c=3; точка (1;5) _ a1²+b1+c=5; a+b+c=5; точка (2;9); a2²+b2+c=9. Решаем систему этих уравнений: a+b+3=5; 4a+2b+3=9. Из первого уравнения выделяем а: a=2-b и подставляем его во второе уравнение: 4(2-b)+2b=9-3; 8-4b+2b=6; -2b=-2; b=1. Находим а: а=2-1=1. Теперь, когда все коэффициенты известны можем записать уравнение проходящее через заданные точки: у=x²+х+3
1)
30% числа k = 0,3a
35% числа p = 0,35p
0,3k > 0,35p на 20
Первое уравнение:
0,3k - 0,35p = 20
2)
20% числа k = 0,2а
30% числа p = 0,3р
0,3р > 0,2k на 8
Второе уравнение:
0,2k + 8 = 0,3p
3)
Решаем систему.
{0,3k-0,35р = 20
{0,2k - 0,3р = - 8
Первое умножим на 2, а второе умножим на (-3)
{0,6k-0,7р = 40
{-0,6k+0,9р = 24
Сложим
0,6k-0,7р -0,6k+0,9р = 40+24
0,2р = 64
р = 64 : 0,2
р = 320
В первое уравнение 0,3k - 0,35p = 20 подставим р = 320.
0,3k - 0,35·320 = 20
0,3k - 112 = 20
0,3k = 112 + 20
0,3k = 132
k = 132 : 0,3
k = 440
ответ: k = 440;
р = 320.