Согласно условию задачи, дана арифметическая прогрессия аn, в которой а1 = -7.2, а2 = -6.9. Используя определение арифметической прогрессии, находим разность d данной прогрессии: d = а2 - а1 = -6.9 - (-7.2) = -6.9 + 7.2 = 0.3. Используя формулу n-го члена арифметической прогрессии аn = a1 + (n - 1) * d, найдем последний отрицательный член данной прогрессии. Для этого решим в целых числах неравенство: -7.2 + (n - 1) * 0.3 < 0; -7.2 + 0.3 * n - 0.3 < 0; -7.5 + 0.3 * n < 0; 0.3 * n < 7.5; n < 7.5 / 0.3; n < 25. Следовательно, 24-й член а24 является последним отрицательным членом данной прогрессии. Используя формулу суммы первых n членов арифметической прогрессии Sn = (2 * a1 + d * (n - 1)) * n / 2 при n = 24, найдем сумму первых 24 членов данной арифметической прогрессии: S24 = (2 * ( -7.2) + 0.3 * (24 - 1)) * 24 / 2 = (-14.4 + 6.9) * 12 = -7.5 * 12 = -90. ответ: сумма всех отрицательных членов данной арифметической прогрессии равна -90.
Який многочлен треба відняти від многочлена 3c5 – 2c4 + 14c3 – 4c2 + c, щоб їхня різниця тотожно дорівнювала многочлену 5c3 + c2 – 7c?
3c5 – 2c4 + 9c3 – 5c2 + 8c
Знайдіть значення виразу:
2a(3a – 5) – 4a(4a – 5), якщо a = -0,2
-2,4
Обчисліть значення виразу, використовуючи винесення спільного множника за дужки: 2,49 ∙ 1,35 – 1,35 ∙1,84 + 1,352
Нинаю
Сторона квадрата на 3 см менша від однієї зі сторін прямокутника та на 5 см більша за його другу сторону. Знайдіть сторону квадрата, якщо його площа на 45 см2 більша за площу даного прямокутника.
15
Розв’яжіть рівняння, використовуючи розкладання на множники:
-90
Объяснение:
Согласно условию задачи, дана арифметическая прогрессия аn, в которой а1 = -7.2, а2 = -6.9. Используя определение арифметической прогрессии, находим разность d данной прогрессии: d = а2 - а1 = -6.9 - (-7.2) = -6.9 + 7.2 = 0.3. Используя формулу n-го члена арифметической прогрессии аn = a1 + (n - 1) * d, найдем последний отрицательный член данной прогрессии. Для этого решим в целых числах неравенство: -7.2 + (n - 1) * 0.3 < 0; -7.2 + 0.3 * n - 0.3 < 0; -7.5 + 0.3 * n < 0; 0.3 * n < 7.5; n < 7.5 / 0.3; n < 25. Следовательно, 24-й член а24 является последним отрицательным членом данной прогрессии. Используя формулу суммы первых n членов арифметической прогрессии Sn = (2 * a1 + d * (n - 1)) * n / 2 при n = 24, найдем сумму первых 24 членов данной арифметической прогрессии: S24 = (2 * ( -7.2) + 0.3 * (24 - 1)) * 24 / 2 = (-14.4 + 6.9) * 12 = -7.5 * 12 = -90. ответ: сумма всех отрицательных членов данной арифметической прогрессии равна -90.
Який многочлен треба відняти від многочлена 3c5 – 2c4 + 14c3 – 4c2 + c, щоб їхня різниця тотожно дорівнювала многочлену 5c3 + c2 – 7c?
3c5 – 2c4 + 9c3 – 5c2 + 8c
Знайдіть значення виразу:
2a(3a – 5) – 4a(4a – 5), якщо a = -0,2
-2,4
Обчисліть значення виразу, використовуючи винесення спільного множника за дужки: 2,49 ∙ 1,35 – 1,35 ∙1,84 + 1,352
Нинаю
Сторона квадрата на 3 см менша від однієї зі сторін прямокутника та на 5 см більша за його другу сторону. Знайдіть сторону квадрата, якщо його площа на 45 см2 більша за площу даного прямокутника.
15
Розв’яжіть рівняння, використовуючи розкладання на множники:
(х – 3)(х + 7) – (х + 7)(х – 8) = 0
-7
Объяснение: