ответ: у = -x^2+2(a-1)x+a^2. График - парабола, ветви которой вниз.
Раз два корня, то график пересекает ось Ох в двух точках, значит, вершина параболы должна быть в верхней полуплоскости. А раз число 1 находится между корнями,
то у (1) > 0
Имеем: y(1) = -1 + 2(а-1) + а^2
-1 + 2(а-1) + а^2 > 0
-1 + 2a - 2 + a^2 > 0
a^2 + 2a - 3 > 0
(a + 3)(a - 1) >0
a Є (- бесконечность; -3) U (1; +бесконечность)
2) D = (2 - m)^2 +4m + 12 = 4 - 4m + m^2 + 4m +12 =
= m^2 + 16 >0
(x1)^2 + (x2)^2 = (x1 + x2)^2 - 2x1x2
x1 + x2 = m - 2
x1x2 = -m - 3
(x1)^2 + (x2)^2 =(m - 2)^2 - 2(-m - 3) = m^2 - 4m + 4 + 2m + 6 =
= m^2 - 2m + 10.
Объяснение:
Минимальное значение будет при m = 2/2 = 1
ответ: у = -x^2+2(a-1)x+a^2. График - парабола, ветви которой вниз.
Раз два корня, то график пересекает ось Ох в двух точках, значит, вершина параболы должна быть в верхней полуплоскости. А раз число 1 находится между корнями,
то у (1) > 0
Имеем: y(1) = -1 + 2(а-1) + а^2
-1 + 2(а-1) + а^2 > 0
-1 + 2a - 2 + a^2 > 0
a^2 + 2a - 3 > 0
(a + 3)(a - 1) >0
a Є (- бесконечность; -3) U (1; +бесконечность)
2) D = (2 - m)^2 +4m + 12 = 4 - 4m + m^2 + 4m +12 =
= m^2 + 16 >0
(x1)^2 + (x2)^2 = (x1 + x2)^2 - 2x1x2
x1 + x2 = m - 2
x1x2 = -m - 3
(x1)^2 + (x2)^2 =(m - 2)^2 - 2(-m - 3) = m^2 - 4m + 4 + 2m + 6 =
= m^2 - 2m + 10.
Объяснение:
Минимальное значение будет при m = 2/2 = 1
Sin(π/4 - x) = Cos (π/2 - π/4 + x) = Cos(π/4 + x)
теперь левая часть = Сtg(π/4 + x) = (1 - tgx)/(1 + tgx)
наше уравнение:
(1 - tgx)/(1 + tgx)= Сos 2x
(Cosx - Sinx)/(Сosx + Sinx) = Сos²x - Sin²x
(Cosx - Sinx)/(Сosx + Sinx) -( Сosx - Sinx)( Cosx + Sinx) = 0
(Cosx - Sinx)( 1/(Cosx +Sinx) - (Cosx + Sinx) = 0
Cosx - Sinx = 0 или 1 /(Cosx +Sinx) - (Cosx + Sinx) = 0
1 - tgx = 0 (1 - (Cosx + Sinx)²)/(Cosx + Sinx) = 0
tgx = 1 1 - (Cosx +Sinx)² = 0
x = π/4 + πk , k ∈Z 1 - 1 - Sin2x = 0
Sinx = 0
x = πn , n ∈Z