Возможные исходы, бросая два кубика, можно оформить в таблице. Первая цифра в таблице указывает, сколько пунктов выпало на первом кубике, вторая — сколько пунктов на втором кубике. Всего 36 результатов. (см. на фото)
P(события) = все исходы;
P(сумма пунктов равна 4) = 3/36 (благоприятные исходы: 3/1 и 1/3; 2/2 - вместе 3 исходов);
P(сумма пунктов равна 2) =1/36 (1/1 — только 1 благоприятный исход);
P(сумма пунктов больше 9) = 6/36 (исход благоприятный, если выпадет 10, 11 или 12 пунктов, значит, вместе 3 + 2 + 1 = 6 исходов).
Объяснение:
Разложим на множители выражение в числителе и знаменателе.
\begin{gathered}y=\frac{24-12x}{2x-x^2}\\y=\frac{-12(x-2)}{-x(x-2)}\\\left \{ {{y=\frac{12}{x} } \atop {x\neq 2}} \right.\end{gathered}
y=
2x−x
2
24−12x
y=
−x(x−2)
−12(x−2)
{
x
=2
y=
x
12
Это гипербола, которая лежит в 1 и 3 четверти и имеет асимптоты, которыми являются оси координат.
Отметим 2 точки, которые принадлежат этой функции на координатной плоскости для более точно построения.
x=12 --> y=1; (12;1)
x=1 --> y=12; (1;12)
И проведём через них нашу гиперболу.
А - сумма выпавших пунктов равна 6.
Объяснение:
Возможные исходы, бросая два кубика, можно оформить в таблице. Первая цифра в таблице указывает, сколько пунктов выпало на первом кубике, вторая — сколько пунктов на втором кубике. Всего 36 результатов. (см. на фото)
P(события) = все исходы;
P(сумма пунктов равна 4) = 3/36 (благоприятные исходы: 3/1 и 1/3; 2/2 - вместе 3 исходов);
P(сумма пунктов равна 2) =1/36 (1/1 — только 1 благоприятный исход);
P(сумма пунктов больше 9) = 6/36 (исход благоприятный, если выпадет 10, 11 или 12 пунктов, значит, вместе 3 + 2 + 1 = 6 исходов).