Средняя скорость - это всё пройденное расстояние, деленное на всё затраченное время. За 2 часа со скоростью 55 км/ч машина проехала 110 км. За 1 час со скоростью 60 км/ч машина проехала 60 км. То есть за 3 часа она проехала 170 км. Остальное время t ч она ехала со скоростью 70 км/ч и проехала 70t км. Всего машина проехала 170 + 70t км за 3 + t часов. Средняя скорость (170 + 70t) / (3 + t) = 65 км/ч. 170 + 70t = 65(3 + t) = 195 + 65t 70t - 65t = 195 - 170 5t = 25 t = 5 часов. За 5 часов со скоростью 70 км/ч машина проехала 70*5 = 350 км. Расстояние между городами равно 170 + 350 = 520 км.
1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
За 2 часа со скоростью 55 км/ч машина проехала 110 км.
За 1 час со скоростью 60 км/ч машина проехала 60 км.
То есть за 3 часа она проехала 170 км.
Остальное время t ч она ехала со скоростью 70 км/ч и проехала 70t км.
Всего машина проехала 170 + 70t км за 3 + t часов. Средняя скорость
(170 + 70t) / (3 + t) = 65 км/ч.
170 + 70t = 65(3 + t) = 195 + 65t
70t - 65t = 195 - 170
5t = 25
t = 5 часов.
За 5 часов со скоростью 70 км/ч машина проехала 70*5 = 350 км.
Расстояние между городами равно 170 + 350 = 520 км.
F`(x)=3x²-6x-9
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²-6x-9=0
3·(x²-2x-3)=0
x²-2x-3=0
D=16
x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов
Обе точки принадлежат указанному промежутку
Не проверяя какая из них точка максимума, какая точка минимума, просто находим
F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее
F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее
F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2)
F`(x)=3x²+18x-24
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²+18x+24=0
3·(x²+6x+8)=0
x²+6x+8=0
D=36-4·8=36-32=4
x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов
Обе точки не принадлежат указанному промежутку
F(0)=10 - наименьшее
F(3)=3³+9·3²-24·3+10=46 - наибольшее