Для решения нужно вспомнить некоторые правила для сторон треугольников: a + b > c | a + c > b | b + c > a
Чтобы избежать таких казусов, мы заключим сторону a в неравенство:
Начинаем перебор: Длина наибольшей стороны равняется а) 9, поэтому может быть [1] вариант (9, 9, 9) б) 10, поэтому вариантов может быть [2] (10, 10, 7), (10, 9, 8) в) 11, поэтому вариантов может быть [4] (11, 11, 5), (11, 10, 6), (11, 9, 7) и (11, 8, 8). г) 12, поэтому вариантов может быть [5] (12, 12, 3), (12, 11, 4), (12, 10, 5), (12, 9, 6), (12, 8, 7). д) 13, поэтому вариантов может быть [7] (13, 13, 1), (13, 12, 2), (13, 11, 3), (13, 10, 4), (13, 9, 5), (13, 8, 6), (13, 7, 7) Итого: 1 + 2 + 4 + 5 + 7 = 19
2.=3x^4-12x^2+18x
3.=28a^2b+24ab^2+2a^2b-16ab^2=30a^2+8ab^2
2).=12m+20m^2-60m-20m^2=-48m
m=-0.2
-48*(-0.2)=9.6
3).1.=5a(a-4b)
2.=7x^3(1-2x^2)
3.=2ab(3ab-4a+6b)
4).1.x^2-3x=0
x(x-3)=0
x=0 или x-3=0
x=3
2.(x-2)(x+5)=0
x-2=0 или x+5=0
x=2 x=-5
3).(18xy+6x)+(-24y-8)=6x(3y+1)-8(3y+1)=(3y+1)(6x-8)
(3*0,45+1)(6*5/3-8)=2,35*2=4,7
4).1.=3(a-b)+x(a-b)=(a-b)(3+x)
2.=(a+b)^2+(3a+3b)=(a+b)^2+3(a+b)=(a+b)(a+b+3)
3.=(x^8-4X^5)+(X^3-4)=X^5(X^3-4)+(X^3-4)=(x^3-4)(x^5+1)
a + b > c | a + c > b | b + c > a
Чтобы избежать таких казусов, мы заключим сторону a в неравенство:
Начинаем перебор:
Длина наибольшей стороны равняется
а) 9, поэтому может быть [1] вариант (9, 9, 9)
б) 10, поэтому вариантов может быть [2] (10, 10, 7), (10, 9, 8)
в) 11, поэтому вариантов может быть [4] (11, 11, 5), (11, 10, 6), (11, 9, 7) и (11, 8, 8).
г) 12, поэтому вариантов может быть [5] (12, 12, 3), (12, 11, 4), (12, 10, 5), (12, 9, 6), (12, 8, 7).
д) 13, поэтому вариантов может быть [7] (13, 13, 1), (13, 12, 2), (13, 11, 3), (13, 10, 4), (13, 9, 5), (13, 8, 6), (13, 7, 7)
Итого: 1 + 2 + 4 + 5 + 7 = 19
ответ: 19.