Наш план действий: 1) ищем производную 2) приравниваем её к нулю, решаем уравнение ( ищем критические точки) 3) Смотрим: какие из них попали в указанный промежуток. 4) Ищем значения данной функции в этих точках и на концах данного промежутка. 5) пишем ответ Начали? 1) у'= 3x² -18x +24 2) 3x² - 18x + 24 -0 x² - 6x +8 = 0 По т. Виета х = 2 и 4 3) в наш промежуток попало число 2 4) х = 2 у = 2³ -9*2² +24*2 -1 = 8 -36 +48 -1 = 19 х = -1 у = (-1)³ - 9*(-1)² + 24*(-1) -1 = -1 -9 -24 -1= -35 х = 3 у = 3³ - 9*3² +24*3 -1 = 27 -81 +72 -1 = 17 5) max y = 19 [-1; 3]
1) ищем производную
2) приравниваем её к нулю, решаем уравнение ( ищем критические точки)
3) Смотрим: какие из них попали в указанный промежуток.
4) Ищем значения данной функции в этих точках и на концах данного промежутка.
5) пишем ответ
Начали?
1) у'= 3x² -18x +24
2) 3x² - 18x + 24 -0
x² - 6x +8 = 0
По т. Виета х = 2 и 4
3) в наш промежуток попало число 2
4) х = 2
у = 2³ -9*2² +24*2 -1 = 8 -36 +48 -1 = 19
х = -1
у = (-1)³ - 9*(-1)² + 24*(-1) -1 = -1 -9 -24 -1= -35
х = 3
у = 3³ - 9*3² +24*3 -1 = 27 -81 +72 -1 = 17
5) max y = 19
[-1; 3]
(х + 35) - скорость автомобилиста
2 ч 48 мин = 2,8 час
60 / х - 60 / (х + 35) = 2,8
60 * (х + 35) - 60 * х = 2,8 *(х + 35) * х
60х + 2100 - 60х = 2,8х^2 +98x
2.8x^2 +98x - 2100 = 0
x^2 + 35x - 750 = 0 Найдем дискриминант D Квадратного уравнения
D = 35^2 - 4 * 1 * (- 750) = 1225 + 3000 = 4225 ; sqrt 4225 = 65
Найдем корни уравнения : 1 - ый = (- 35 + 65) / 2 * 1 = 30/2 = 15
2 - ой = (- 35 - 65) / 2 = - 100 / 2 = - 50 . Скорость не может быть меньше 0 , поэтому подходит 1 - ый корень , Скорость велосипедиста равна 15 км/ч