Условие: Пусть длина окружности меньшего колеса это х м, Тогда длина окружности большего колеса это (х+1) м Количество оборотов меньшего колеса (y+20) Количество оборотов меньшего колеса y
Решение: Составляем систему уравнений: x(y+20)=175 и (x+1)y=175 xy+20x=175 и xy+y=175 Из первого уравнения вычитаем второе: 20х=y Подставляем полученное значение y во второе уравнение: x*20x+20x=175 20x^2+20x-175=0 x^2+x-8,75=0 D=b^2-4ac=1^2-4*1*(-8,75)=1+35=36 x=2,5 (м) - длина окружности меньшего колеса х+1=2,5+1=3,5 (м) - длина окружности большего колеса
а) Посчитаем, сколько существует взять два белых шара. На каждый из трёх шаров (3 варианта) приходится другой из оставшихся двух (2 варианта). Но так как порядок вытаскивания шаров не имеет значения, то, умножив 3 на 2, мы получим комбинаций двух шаров, учитывая их порядок, т.е. АБ и БА будут двумя разными делим на 2 и получаем один это просто А и Б. Аналогично необходимо поделить на 2 произведение 3 и 2.
взять два белых шара. Проверить данный можно методом подбора, назовём шары А, Б и В. Мы можем взять два шара следующими АБ, АВ, БВ. Их три, убедились.
Аналогично решим с чёрными шарами.
Посчитаем, сколько существует взять два белых шара. На каждый из шести шаров (6 вариантов) приходится другой из оставшихся пяти (5 варианта). Но так как порядок вытаскивания шаров не имеет значения, то, умножив 6 на 5, мы получим комбинаций двух шаров, учитывая их порядок, т.е. АБ и БА будут двумя разными делим на 2 и получаем один это просто А и Б. Аналогично необходимо поделить на 2 произведение 6 и 5.
Здесь подбором долго подбирать, поэтому нужно знать логику решения, описанную выше.
Теперь узнаем общее кол-во взять два любых шара. Логика та же:
Теперь узнаем вероятность того, что два шара, вытащенные из урны одновременно, одинакового цвета. Для этого две первые суммы (3 и 15) поделим на общее кол-во
(15 + 3) / 36 = 18 / 36 = 1/2.
б) В пункте А мы узнали вероятность события А - 1/2. Так как события А и Б - несовместные (если вытащили шары одного цвета, то они не разных цветов, т.е. события А и Б не могут произойти одновременно), значит вероятность события Б = 1 - 1/2 = 1/2.
1/2 = 1/2 ⇒ события А и Б - равновозможные.
Если интересно, как получить вероятность события "шары разных цветов":
На каждый из чёрных шаров (3) приходится по 6 вариантов белых (6). То есть если взять какой-то из чёрных шаров, то будет 6 вариантов для составления комбинации с белым. Поэтому 3 умножаем на 6.
В значении вероятности события Б тоже можно убедиться:
Пусть длина окружности меньшего колеса это х м,
Тогда длина окружности большего колеса это (х+1) м
Количество оборотов меньшего колеса (y+20)
Количество оборотов меньшего колеса y
Решение:
Составляем систему уравнений:
x(y+20)=175 и (x+1)y=175
xy+20x=175 и xy+y=175
Из первого уравнения вычитаем второе: 20х=y
Подставляем полученное значение y во второе уравнение: x*20x+20x=175
20x^2+20x-175=0
x^2+x-8,75=0
D=b^2-4ac=1^2-4*1*(-8,75)=1+35=36
x=2,5 (м) - длина окружности меньшего колеса
х+1=2,5+1=3,5 (м) - длина окружности большего колеса
ответ: 2,5м и 3,5м
Всего 3 + 6 = 9 шаров.
а) Посчитаем, сколько существует взять два белых шара. На каждый из трёх шаров (3 варианта) приходится другой из оставшихся двух (2 варианта). Но так как порядок вытаскивания шаров не имеет значения, то, умножив 3 на 2, мы получим комбинаций двух шаров, учитывая их порядок, т.е. АБ и БА будут двумя разными делим на 2 и получаем один это просто А и Б. Аналогично необходимо поделить на 2 произведение 3 и 2.
взять два белых шара. Проверить данный можно методом подбора, назовём шары А, Б и В. Мы можем взять два шара следующими АБ, АВ, БВ. Их три, убедились.
Аналогично решим с чёрными шарами.
Посчитаем, сколько существует взять два белых шара. На каждый из шести шаров (6 вариантов) приходится другой из оставшихся пяти (5 варианта). Но так как порядок вытаскивания шаров не имеет значения, то, умножив 6 на 5, мы получим комбинаций двух шаров, учитывая их порядок, т.е. АБ и БА будут двумя разными делим на 2 и получаем один это просто А и Б. Аналогично необходимо поделить на 2 произведение 6 и 5.
Здесь подбором долго подбирать, поэтому нужно знать логику решения, описанную выше.
Теперь узнаем общее кол-во взять два любых шара. Логика та же:
Теперь узнаем вероятность того, что два шара, вытащенные из урны одновременно, одинакового цвета. Для этого две первые суммы (3 и 15) поделим на общее кол-во
(15 + 3) / 36 = 18 / 36 = 1/2.
б) В пункте А мы узнали вероятность события А - 1/2. Так как события А и Б - несовместные (если вытащили шары одного цвета, то они не разных цветов, т.е. события А и Б не могут произойти одновременно), значит вероятность события Б = 1 - 1/2 = 1/2.
1/2 = 1/2 ⇒ события А и Б - равновозможные.
Если интересно, как получить вероятность события "шары разных цветов":
На каждый из чёрных шаров (3) приходится по 6 вариантов белых (6). То есть если взять какой-то из чёрных шаров, то будет 6 вариантов для составления комбинации с белым. Поэтому 3 умножаем на 6.
В значении вероятности события Б тоже можно убедиться:
Р(Б) = 18/36 = 1/2