Вот накалякал. Разбирайся :)
xy/(x+y) = 5xz/(x+z) = 7yz/(y+z) = 9
xy = 5x + 5yxz = 7x + 7zyz = 9y + 9z
x(y-5) = 5yx = 5y/(y-5)
5yz/(y-5) = 35y/(y-5) + 7z5yz = 35y + 7z * (y-5)5yz = 35y + 7yz - 35z2yz + 35y = 35zy(2z + 35) = 35zy = 35z/(2z + 35) = z/(2z/35 + 1)
35z^2/(2z + 35) = 315z/(2z + 35) + 9z35z^2 = 315z + 9z*(2z + 35)35z^2 = 315z + 18z^2 + 315z17z^2 = 630zz=630/17
y = 35*630/(2*630/17 + 35)/17 = 35*630/(1260 + 595) = 22050/1855 = 630 / 53
x = 5*630/(630/53 - 5)/53 = 5*630/((630/53 - 5)*53) = 5*630/365 = 630/73
y=√|2-x|-|2x+4| (под корнем все выражение)
y=√ ( |2-x| - |2x+4| ) ⇔ y = √ ( |x -2| - |2x+4| )
ООФ : |x -2| - |2x+4| ≥ 0 ⇔|2x+4| ≤ |2-x| ⇔ |2x+4|² ≤ |2-x|² ⇔
(2x+4 )² ≤ (2-x )² ⇔ (2x+4 )² - (2-x )² ≤ 0 ⇔ (2x+4 +2-x )(2x+4 -2+x ) ≤ 0 ⇔ 3(x+6) (x+2/3) ≤ 0 ⇒ x ∈ [ -6 ; -2/3] . Этот замкнутый интервал (отрезок)
содержит 6 целых чисел : { -6 ; -5 ; -4 ; -3 ; -2 ; -1} .
ответ : 6 целых чисел .
* * * P.S. * * *
( 2x+4 )² ≤ ( 2-x )² ⇔ 4x² +16x +16 ≤ 4 - 4x+x² ⇔3x² +20x +12 ≤ 0 ⇔
3(x +6) (x +2/3) ≤ 0 .
Для удобства проверки представим функцию в следующем виде :
y = √ ( |x -2 | - 2|x+2| )
Вот накалякал. Разбирайся :)
xy/(x+y) = 5
xz/(x+z) = 7
yz/(y+z) = 9
xy = 5x + 5y
xz = 7x + 7z
yz = 9y + 9z
x(y-5) = 5y
x = 5y/(y-5)
5yz/(y-5) = 35y/(y-5) + 7z
5yz = 35y + 7z * (y-5)
5yz = 35y + 7yz - 35z
2yz + 35y = 35z
y(2z + 35) = 35z
y = 35z/(2z + 35) = z/(2z/35 + 1)
35z^2/(2z + 35) = 315z/(2z + 35) + 9z
35z^2 = 315z + 9z*(2z + 35)
35z^2 = 315z + 18z^2 + 315z
17z^2 = 630z
z=630/17
y = 35*630/(2*630/17 + 35)/17 = 35*630/(1260 + 595) = 22050/1855 = 630 / 53
x = 5*630/(630/53 - 5)/53 = 5*630/((630/53 - 5)*53) = 5*630/365 = 630/73