Для этого надо построить графики функций, из которых состоит система, в одной системе координат, точки пересечения этих графиков будут решениями системы. 1)
график - прямая линия, для построения нужны 2 точки. x=0; y=-3; (0;-3) y=0; x=1,5; (1,5;0) строим график(см. вложение,синим цветом) как видно из графика, прямые пересекаются в одной точке => данная система имеет только одно решение
В левой части неравенства квадратное уравнение, в котором
х₁ = -7, х₂ = 1.
График квадратичной функции - парабола.
Значения х - это точки пересечения параболой оси Ох, ветви вверх.
Представить эту параболу мысленно, или набросать схематично (ничего вычислять не нужно) и посмотреть, при каких значениях х парабола выше оси Ох (у >= 0, как в неравенстве).
Решение неравенства: х∈(-∞; -7]∪[1; +∞), объединение.
б) (х - 3)(х - 5) <= 0
Методика та же, что в предыдущем решении, только смотреть параболу ниже оси Ох:
х₁ = 3; х₂ = 5.
Решение неравенства: х∈[3; 5], пересечение.
в) (х - 2)(х + 3) < 0
х₁ = 2; х₂ = -3.
Решение неравенства: х∈(-3; 2), пересечение.
г) (а + 2)(а - 5) <= 0
а₁ = -2; а₂ = 5.
Решение неравенства: х∈[-2; 5], пересечение.
г) (t + 3)(t + 4) >= 0
t₁ = -3; t₂ = -4.
Решение неравенства: х∈(-∞; -4]∪[-3; +∞), объединение.
д) (2 - с)(3 - с) >= 0
-(c - 2) * -(c - 3) >= 0
(c - 2)(c - 3) >= 0
c₁ = 2; c₂ = 3
Решение неравенства: х∈(-∞; 2]∪[3; +∞), объединение.
Примечание: если знак >= или <=, неравенство нестрогое, скобка квадратная при числах. Знаки бесконечности всегда с круглой скобкой.
Если знак > или <, неравенство строгое, скобка круглая.
1)
график - прямая линия, для построения нужны 2 точки.
x=0; y=6,5; (0;6,5)
y=0; x=2,6 (2,6;0)
строим график(см. вложение, красным цветом)
2)
график - прямая линия, для построения нужны 2 точки.
x=0; y=-3; (0;-3)
y=0; x=1,5; (1,5;0)
строим график(см. вложение,синим цветом)
как видно из графика, прямые пересекаются в одной точке => данная система имеет только одно решение
В решении.
Объяснение:
а) (х + 7)(х - 1) >= 0
В левой части неравенства квадратное уравнение, в котором
х₁ = -7, х₂ = 1.
График квадратичной функции - парабола.
Значения х - это точки пересечения параболой оси Ох, ветви вверх.
Представить эту параболу мысленно, или набросать схематично (ничего вычислять не нужно) и посмотреть, при каких значениях х парабола выше оси Ох (у >= 0, как в неравенстве).
Решение неравенства: х∈(-∞; -7]∪[1; +∞), объединение.
б) (х - 3)(х - 5) <= 0
Методика та же, что в предыдущем решении, только смотреть параболу ниже оси Ох:
х₁ = 3; х₂ = 5.
Решение неравенства: х∈[3; 5], пересечение.
в) (х - 2)(х + 3) < 0
х₁ = 2; х₂ = -3.
Решение неравенства: х∈(-3; 2), пересечение.
г) (а + 2)(а - 5) <= 0
а₁ = -2; а₂ = 5.
Решение неравенства: х∈[-2; 5], пересечение.
г) (t + 3)(t + 4) >= 0
t₁ = -3; t₂ = -4.
Решение неравенства: х∈(-∞; -4]∪[-3; +∞), объединение.
д) (2 - с)(3 - с) >= 0
-(c - 2) * -(c - 3) >= 0
(c - 2)(c - 3) >= 0
c₁ = 2; c₂ = 3
Решение неравенства: х∈(-∞; 2]∪[3; +∞), объединение.
Примечание: если знак >= или <=, неравенство нестрогое, скобка квадратная при числах. Знаки бесконечности всегда с круглой скобкой.
Если знак > или <, неравенство строгое, скобка круглая.