В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
elizavetanosova2000
elizavetanosova2000
26.02.2021 16:03 •  Алгебра

Y"=3sqrt(y+1) решить, условие - найти частное решение диффиренциального уравнения, допускающего понижение порядка

Показать ответ
Ответ:
DFleX
DFleX
08.10.2020 20:19

Здесь правая часть уравнения зависит только от переменной  у. Вводим замену y'=p(y) тогда y''=pp', получаем

pp'=3\sqrt{y+1} - уравнение с разделяющимися переменными

\displaystyle \int pdp=3\int\sqrt{y+1}dy\\ \\ \dfrac{p^2}{2}=3\cdot \dfrac{2}{3}(y+1)^{3/2}+C_1~~~~\Rightarrow~~~ p=\pm\sqrt{4(y+1)^{3/2}+C_1}

Выполним обратную замену

y'=\pm\sqrt{4(y+1)^{3/2}+C_1}\\ \\ \displaystyle \int \dfrac{dy}{\sqrt{4(y+1)^{3/2}+C_1}}=\pm\int dx\\ \\ \\ \int \dfrac{dy}{\sqrt{4(y+1)^{3/2}+C_1}}=\pm\dfrac{x^2}{2}+C_2

Последний интеграл не так уж и просто вычислить...

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота