Алгебраа. решите уравнение ..x^3-3x^2-x+3=0 Преобразуем выражение x³-3x²-x+3=0 х²(х-3)-1*(х-3)=0 Вынесем общий множитель х-3, получим (х-3)(х²-1)=0 т. к. а²-в²=(а-в) (а+в) , получим (х-3)(х-1)(х+1)=0 Произведение равно нулю, если один из множителей равен нулю, т. е. х-3=0 или х-1=0 или х+1=0, отсюда х=3 или х=1 или х=-1 ответ уравнение имеет три корня 3; 1; -1 решите неравенство -2x²-5x больше либо равно -3 -2x²-5x ≥-3 или -2x²-5x +3≥0 Решим уравнение -2x²-5x +3=0 Дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле Д=в²-4ас=(-5)²-4*(-2)*3=25+24=49 Корни квадратного уравнения определим по формуле х1=-в+√Д/2а=5+√49/2*(-2)=5+7/(-4)= 12/(-4)=-3 х2=-в-√Д/2а=5-√49/2*(-2)=5-7/(-4)= -2/(-4)=½ т. е. -2x²-5x +3=(-2)(х-½)(х+3)=(1-2х) (х+3) Отметим на числовой оси все корни уравнения и определим знак каждого промежутка
Объяснение:
Если меньшая сторона прямоугольника - х см, то из условия большая сторона на 4 см больше, то есть (х+4), а диагональ - на 8 см больше, то есть (х+8).
Составляем уравнение исходя из теоремы Пифагора для прям. тр-ка, в котором гипотенуза - диагональ пр-ка, а катеты - его стороны:
(х+8)²= х² + (х+4)²
х² + 16х + 64 = х² + х² + 8х + 16
х² - 8х - 48 = 0
По теореме Виета корни:
х₁ = -4
х₂ = 12
Первый корень не подходит по смыслу. Значит меньшая сторона пр-ка равна 12.
Большая тогда равна 12+4 = 16 см.
ответ: 12см; 16 см.
Преобразуем выражение
x³-3x²-x+3=0
х²(х-3)-1*(х-3)=0
Вынесем общий множитель х-3, получим
(х-3)(х²-1)=0
т. к. а²-в²=(а-в) (а+в) , получим
(х-3)(х-1)(х+1)=0
Произведение равно нулю, если один из множителей равен нулю, т. е.
х-3=0 или х-1=0 или х+1=0, отсюда
х=3 или х=1 или х=-1
ответ уравнение имеет три корня 3; 1; -1
решите неравенство -2x²-5x больше либо равно -3
-2x²-5x ≥-3
или -2x²-5x +3≥0
Решим уравнение
-2x²-5x +3=0
Дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле
Д=в²-4ас=(-5)²-4*(-2)*3=25+24=49
Корни квадратного уравнения определим по формуле
х1=-в+√Д/2а=5+√49/2*(-2)=5+7/(-4)= 12/(-4)=-3
х2=-в-√Д/2а=5-√49/2*(-2)=5-7/(-4)= -2/(-4)=½
т. е. -2x²-5x +3=(-2)(х-½)(х+3)=(1-2х) (х+3)
Отметим на числовой оси все корни уравнения и определим знак каждого промежутка