Найдите наибольшее и наименьшее значения заданной функции на заданном промежутке: а) y=x^3-2x^2+1, [0,5 ; + ∞ ) ] б) y=1/5x^5-x^2, [0 ; + ∞) ]
ЗАДАН НЕ ЗАМКНУТЫЙ ИНТЕРВАЛ ??? а) y=x³ - 2x² +1, x ∈ [0,5 ; + ∞ ) --- Найдем критические точки , интервалы возрастания, убывания , точки экстремума и экстремумы данной функции. Функция (многочлен) имеет производную в любой точке . Если производная f '(x) >0 на интервале, то Функция f(x) возрастает на данном интервале , а если f '(x) < 0 на интервале, то функция убывает на данном интервале y ' = (x³- 2x² +1) ' =( x³) ' - (2x²) ' +(1)' =3x² -2*(x²) ' +0 = 3x² - 4x ; критические точки y ' =0 ; 3x(x - 4/3) =0 ; x₁ =0 ∉ [ 0,5 ; + ∞ ) . x₂ - 4/3 =0 ⇔ x₂= 4/3. y' + - + 0 4/3 y ↑ мах ↓ мин ↑
Символы : "↑"(функция возрастает на интервале) , "↓" (функция убывает). y(4/3) =(4/3)³ - 2*(4/3)² +1 =64/27 -32/9 +1 = (64 -96 +27)/27 = -5/27. y(0,5) =(0,5)³ -2*(0,5)² +1 = 0,125 -0,5 +1 = 0,525 . наименьшее значение: - 5 / 27≈ -0,185 ( в точке x = 4/3) наибольшее значение не существует (если x → +∞ , то y → +∞) --- ЕСЛИ допустим не ∞, а 0,8 ( почти перевернутый ∞ ) у(0,8) = (0,8)³ -2*(0,8)² +1 =(0,8)²*(0,8 - 2) +1 =0,64* (-1,2) +1 = 0,232 Тогда наименьшее значение - 5 / 27≈ -0,185 ( в точке x = 4/3) , а наибольшее 0,525 ( в точке x = 0,5 ).
y(0) = 0 y(∛2) = (1/5)* (∛2)⁵ - (∛2)² = (2∛4)/5 - ∛4) /5=(∛4)*(2/5 - 1) = -(3∛4) /5 наименьшее значение: -(3∛4) /5≈ ( в точке x = ∛2 ) наибольшее значение не существует (если x → +∞ , то y → +∞)
ответ: 21.02.
Объяснение:
1. Не менее четверти от 41 машины - это минимум 11 машин. Если 10 февраля было очищено 11 машин, то на 11 февраля осталось 41-11=30 заснеженных машин.
2. Не менее четверти от 30 машины - это минимум 8 машин. Если 11 февраля было очищено 8 машин, то на 12 февраля осталось 30-8=22 заснеженные машины.
3. Не менее четверти от 22 машин - это минимум 6 машин. Если 12 февраля было очищено 6 машин, то на 13 февраля осталось 22-6=16 заснеженных машин.
4. Не менее четверти от 16 машин - это минимум 4 машины. Если 13 февраля были очищены 4 машины, то на 14 февраля осталось 16-4=12 заснеженных машин.
5. Не менее четверти от 12 машины - это минимум 3 машины. Если 14 февраля были очищены 3 машины, то на 15 февраля осталось 12-3=9 заснеженных машин.
6. Не менее четверти от 9 машины - это минимум 3 машины. Если 15 февраля были очищены 3 машины, то на 16 февраля осталось 9-3=6 заснеженных машин.
7. Не менее четверти от 6 машины - это минимум 2 машины. Если 16 февраля были очищены 2 машины, то на 17 февраля остались 6-2=4 заснеженные машины.
8. Не менее четверти от 4 машин - это минимум 1 машина. Если 17 февраля была очищена 1 машина, то на 18 февраля остались 4-1=3 заснеженные машины.
9. Не менее четверти от 3 машин - это минимум 1 машина. Если 18 февраля была очищена 1 машина, то на 19 февраля остались 3-1=2 заснеженные машины.
10. Не менее четверти от 2 машин - это минимум 1 машина. Если 19 февраля была очищена 1 машина, то на 20 февраля осталось 2-1=1 заснеженная машина.
11. Одна оставшаяся заснеженная машина будет убрана 20 февраля. Поэтому снегопад пошёл не позднее 21 февраля, т.е. 21.02.
а) y=x^3-2x^2+1, [0,5 ; + ∞ ) ]
б) y=1/5x^5-x^2, [0 ; + ∞) ]
ЗАДАН НЕ ЗАМКНУТЫЙ ИНТЕРВАЛ ???
а)
y=x³ - 2x² +1, x ∈ [0,5 ; + ∞ )
---
Найдем критические точки , интервалы возрастания, убывания , точки экстремума и экстремумы данной функции.
Функция (многочлен) имеет производную в любой точке .
Если производная f '(x) >0 на интервале, то Функция f(x) возрастает на данном интервале , а если f '(x) < 0 на интервале, то функция убывает на данном интервале
y ' = (x³- 2x² +1) ' =( x³) ' - (2x²) ' +(1)' =3x² -2*(x²) ' +0 = 3x² - 4x ;
критические точки
y ' =0 ;
3x(x - 4/3) =0 ;
x₁ =0 ∉ [ 0,5 ; + ∞ ) .
x₂ - 4/3 =0 ⇔ x₂= 4/3.
y' + - +
0 4/3
y ↑ мах ↓ мин ↑
Символы : "↑"(функция возрастает на интервале) , "↓" (функция убывает).
y(4/3) =(4/3)³ - 2*(4/3)² +1 =64/27 -32/9 +1 = (64 -96 +27)/27 = -5/27.
y(0,5) =(0,5)³ -2*(0,5)² +1 = 0,125 -0,5 +1 = 0,525 .
наименьшее значение: - 5 / 27≈ -0,185 ( в точке x = 4/3)
наибольшее значение не существует (если x → +∞ , то y → +∞)
---
ЕСЛИ допустим не ∞, а 0,8 ( почти перевернутый ∞ )
у(0,8) = (0,8)³ -2*(0,8)² +1 =(0,8)²*(0,8 - 2) +1 =0,64* (-1,2) +1 = 0,232
Тогда наименьшее значение - 5 / 27≈ -0,185 ( в точке x = 4/3) , а
наибольшее 0,525 ( в точке x = 0,5 ).
б)
y=(1/5)*x⁵ - x² , x ∈ [0 ; + ∞ ) ]
y ' = ( (1/5)*x⁵ - x² ) ' = (1/5)*5 *x⁴ -2x= x⁴ - 2x= x(x³- (∛2)³=
x(x -∛2) (x² +x∛2+(∛2)² )
y ' =0 ;
x(x -∛2) = 0 * * * x² +x∛2+(∛2)² = (x +(1/2)*∛2 )² +(3/4)∛2)² > 0 * * *
y ' + - +
0 ∛2
y ↑ мах ↓ мин ↑
y(0) = 0
y(∛2) = (1/5)* (∛2)⁵ - (∛2)² = (2∛4)/5 - ∛4) /5=(∛4)*(2/5 - 1) = -(3∛4) /5
наименьшее значение: -(3∛4) /5≈ ( в точке x = ∛2 )
наибольшее значение не существует (если x → +∞ , то y → +∞)