Предположим, что искомое число состоит из трех и более цифр, тогда мы получим следующее выражение (для трехзначного числа):
Это равенство не выполняется ни при каких значениях a, b, c. Однозначным искомое число не может быть, поскольку после отбрасывания цифры ничего не останется. Остается вариант - искомое число состоит из двух цифр. Получаем следующее выражение:
Нас устраивают таких однозначные значения a, при которых получаются однозначные значения b:
Таким образом, получаем всего два числа: 14 и 28. ответ: 2
Площадь прямоугольного треугольника равна произведение катетов деленное на 2
Обозначим катеты за A и B, гипотинузу за C. И так как сумма углов треугольника равна 180 градусов, то получается третий, неизвестный угол равен 180-90-15=75 градусов
По теореме косинусов: a^2=b^2+c^2-2bcCos(15)
по теореме Пифагора: a^2+b^2=c^2
Получается система уравнений: a^2=b^2+16-2*4*b*0,9659 a^2+b^2=16
Это равенство не выполняется ни при каких значениях a, b, c.
Однозначным искомое число не может быть, поскольку после отбрасывания цифры ничего не останется.
Остается вариант - искомое число состоит из двух цифр. Получаем следующее выражение:
Нас устраивают таких однозначные значения a, при которых получаются однозначные значения b:
Таким образом, получаем всего два числа: 14 и 28.
ответ: 2
Обозначим катеты за A и B, гипотинузу за C.
И так как сумма углов треугольника равна 180 градусов, то получается третий, неизвестный угол равен 180-90-15=75 градусов
По теореме косинусов:
a^2=b^2+c^2-2bcCos(15)
по теореме Пифагора:
a^2+b^2=c^2
Получается система уравнений:
a^2=b^2+16-2*4*b*0,9659
a^2+b^2=16
a^2=16-b^2
a=корень(16-b^2)
16-b^2=b^2+16-7,7274b
2b^2-7,7274b=0
2b=7,7274
b=3,8637
a=корень(16-b^2)=корень(1,0718)=1,0353
S=ab/2=3,8637*1,0353/2=2