1) Область определения - это проекция графика функции на ось Ох.
Обозначается как D(f) или D(у).
Область определения параболы - множество всех действительных чисел, потому что она проецируется на любую точку оси Ох.
Обычно запись: D(f) = R или D(f) = (-∞; +∞).
2) Область значений - это проекция графика на ось Оу.
Обозначается как E(f) или E(y).
Область значений параболы определяется координатами вершины, конкретно у₀, значение у вершины параболы.
Если коэффициент перед х отрицательный, ветви параболы направлены вниз, область значений Е(f) будет (-∞; у₀], то есть от вершины параболы вниз до - бесконечности.
А если коэффициент перед х положительный, ветви параболы направлены вверх, область значений Е(f) будет [y₀; +∞), то есть от вершины параболы вверх до + бесконечности.
Проще говоря, область определения - это значения х, при которых парабола существует, а область значений - значения у, в каких пределах парабола существует.
3) Определить.
Область определения квадратичной функции (график парабола) - множество всех действительных чисел, R, смотри выше.
Область значений: найти координаты вершины параболы, сначала х₀ по формуле х₀= -b/2a, потом подставить вычисленное значение х в уравнение параболы и вычислить у₀.
Теперь можно определить область значений параболы, от вершины вниз до - бесконечность, или от вершины вверх до + бесконечности.
210=2·3·5·7, поэтому число 210 имеет 4 простых делителя. Каждый делитель числа 210 может быть разложен на простые множители, то есть задается набором простых делителей, выбранных из множества простых делителей числа 210. Поэтому число делителей числа 210 равно числу подмножеств этого множества, то есть , где 4 - это сколько элементов в этом множестве (то есть его мощность). При этом единице соответствует пустое подмножество.
Остается найти вероятность по формуле, которая работает в случае, когда все элементарные исходы равновероятны: вероятность события равна отношению числа благоприятных исходов к общему числу исходов:
В решении.
Объяснение:
1) Область определения - это проекция графика функции на ось Ох.
Обозначается как D(f) или D(у).
Область определения параболы - множество всех действительных чисел, потому что она проецируется на любую точку оси Ох.
Обычно запись: D(f) = R или D(f) = (-∞; +∞).
2) Область значений - это проекция графика на ось Оу.
Обозначается как E(f) или E(y).
Область значений параболы определяется координатами вершины, конкретно у₀, значение у вершины параболы.
Если коэффициент перед х отрицательный, ветви параболы направлены вниз, область значений Е(f) будет (-∞; у₀], то есть от вершины параболы вниз до - бесконечности.
А если коэффициент перед х положительный, ветви параболы направлены вверх, область значений Е(f) будет [y₀; +∞), то есть от вершины параболы вверх до + бесконечности.
Проще говоря, область определения - это значения х, при которых парабола существует, а область значений - значения у, в каких пределах парабола существует.
3) Определить.
Область определения квадратичной функции (график парабола) - множество всех действительных чисел, R, смотри выше.
Область значений: найти координаты вершины параболы, сначала х₀ по формуле х₀= -b/2a, потом подставить вычисленное значение х в уравнение параболы и вычислить у₀.
Теперь можно определить область значений параболы, от вершины вниз до - бесконечность, или от вершины вверх до + бесконечности.
Прикладываю небольшую иллюстрацию.
210=2·3·5·7, поэтому число 210 имеет 4 простых делителя. Каждый делитель числа 210 может быть разложен на простые множители, то есть задается набором простых делителей, выбранных из множества простых делителей числа 210. Поэтому число делителей числа 210 равно числу подмножеств этого множества, то есть , где 4 - это сколько элементов в этом множестве (то есть его мощность). При этом единице соответствует пустое подмножество.
Остается найти вероятность по формуле, которая работает в случае, когда все элементарные исходы равновероятны: вероятность события равна отношению числа благоприятных исходов к общему числу исходов: