по определению: две прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.значит параллельные прямые лежат в одной плоскости.по лемме о перпендикулярности прямых:если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.по определению :прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости. А раз две параллельные прямые принадлежат плоскости, а третья перпендикулярна одной из них, то она перпендикулярна и другой
--------------------
см приложения
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
НЕОБХОДИМО:
y=ctg x
а) Область определения: D (ctg x) = R \ { πn ( n∈ Z ) }.
б) Множество значений: E (ctg x ) = R .
в) Четность, нечетность: функция нечетная.
г) Периодичность: функция периодическая с основным периодом T = π. д) Нули функции: ctg x = 0 при x = π/2 + πn, n ∈ Z.
е) Промежутки знакопостоянства ;
ctgx >0 при x ∈(πn ;πn+π/2) ,n ∈ Z .
ctgx < 0 при x ∈(-π/2+πn ;πn) ,n ∈ Z .
ж) Промежутки монотонности: функция убывает на каждом интервале, целиком принадлежащем ее области определения.
з) Экстремумы: нет.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
График функции y = ctg x в интервале (- π ;2π) изображен на рисунке (приложение)