В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
comeback92
comeback92
31.03.2022 13:40 •  Алгебра

Является ли пара чисел (-3; 5) решением неравенства: а) -4х+2у-23> 0; б) х^-4ху-у^< 45? _

Показать ответ
Ответ:
Женя11134
Женя11134
17.09.2020 12:28
Вариант б)                 
0,0(0 оценок)
Ответ:
shark741
shark741
12.01.2024 12:19
Для того чтобы проверить, является ли пара чисел (-3; 5) решением неравенств, мы подставим эти значения вместо переменных и проверим выполняется ли неравенство.

а) Неравенство -4х+2у-23 > 0:
Подставляем значения -3 и 5 вместо x и y:
-4*(-3) + 2*5 - 23 > 0
12 + 10 - 23 > 0
22 - 23 > 0
-1 > 0

Мы видим, что получившаяся конечная разность (-1) не больше нуля, а должна быть больше нуля, поэтому пара чисел (-3; 5) не является решением данного неравенства.

б) Неравенство х^2 - 4ху - у^2 < 45:
Подставляем значения -3 и 5 вместо x и y:
(-3)^2 - 4*(-3)*5 - 5^2 < 45
9 + 60 - 25 < 45
69 - 25 < 45
44 < 45

Мы видим, что получившаяся конечная разность (44) меньше 45, а должна быть меньше 45, поэтому пара чисел (-3; 5) является решением данного неравенства.

Итак, в результате анализа мы пришли к выводу, что пара чисел (-3; 5) является решением неравенства х^2 - 4ху - у^2 < 45 (б), но не является решением неравенства -4х+2у-23 > 0 (а).
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота