В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
popopolka111
popopolka111
26.06.2022 20:41 •  Алгебра

Является ли решением неравенства 2y+5>4y−17 значение y, равное 12?

После решения неравенства получим y
.
Значение y, равное 12, решением неравенства​

Показать ответ
Ответ:
mulz
mulz
21.10.2020 16:27
4х²=2х-3
4х²-2х+3=0         
D=(-2)²-4×4×3=4-48=-44        D<0, уравнение не имеет корней
----------------------------------------------------------------------------
5х²+26х=24
5х²+26х-24=0
D=26²-4×5×(-24)=676+480=1156          D>0
х₁=\frac{-26+ \sqrt{1156} }{2*5}= \frac{-26+34}{10} = \frac{8}{10}=0,8
х₂=\frac{-26- \sqrt{1156} }{2*5}= \frac{-26-34}{10}= \frac{-60}{10}=-6
х₁=0,8
х₂=-6
-------------------------------------------------------------------------
3х²-5х=0
D=5²-4×3×0=25-0=25          D>0
х₁=\frac{-(-5)+ \sqrt{25} }{2*3}= \frac{5+5}{6}= \frac{10}{6}=1,667
х₂=\frac{-(-5)- \sqrt{25} }{2*3}= \frac{5-5}{6} \frac{0}{6}=0
х₁=1,667
х₂=0
--------------------------------------------------------------------
6-2х²=0
-2х²+6=0
D=0²-4×(-2)×6=0+48=48        D>0
х₁=\frac{-0+ \sqrt{48} }{2*(-2)} = \frac{-0+6,928}{-4}=-1,732&#10;
х₂=\frac{-0- \sqrt{48} }{2*(-2)}= \frac{-0-6,928}{-4}= \frac{-6,928}{-4}=1,732
х₁=-1,732
х₂=1,732
------------------------------------------------------------------
t²=35-2t
t²+2t-35=0
D=2²-4×1×(-35)=4+140=144
t₁=\frac{-2+ \sqrt{144} }{2*1}= \frac{-2+12}{2}= \frac{10}{2}=5
t₂=\frac{-2- \sqrt{144} }{2*1}= \frac{-2-12}{2}= \frac{-14}{2}=-7
t₁=5
t₂=-7
0,0(0 оценок)
Ответ:
nicitama228800
nicitama228800
13.11.2022 13:09

<!--c-->

Преобразим заданное уравнение:

x3+12x2−27x=a

С производной построим график функции y=x3+12x2−27x.

1. Введём обозначение f(x)=x3+12x2−27x.

Найдём область определения функции D(f)=(−∞;+∞).

2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:

f′(x)=(x3+12x2−27x)′=3x2+24x−27.

Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.

Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:

3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1

Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.

Если производная функции в критической (стационарной) точке:

1) меняет знак с отрицательного на положительный, то это точка минимума;

2) меняет знак с положительного на отрицательный, то это точка максимума;

3) не меняет знак, то в этой точке нет экстремума.

Итак, определим точки экстремума:

При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при  −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При  −9<x<1 имеем отрицательную производную, при

Объяснение:

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота