Пусть скорость течения реки - х км/ч Вверх по реке - это значит плывет против течения... S=6 км проплыл сначала. Скорость лодки в стоячей воде 90 м/мин = (90*60) /1000 км/час = = 5,4 км/час Время после отправления из N это t=4 часа 30 минут= 4,5 ч Составим уравнение 6 / (5,4-х) + 6 / х = 4,5 6х + 6* (5,4-х) = 4,5х* (5,4-х) 324 + 45x^2 - 243x = 0 5x^2 - 27 + 36 = 0 полное квадратное уравнение. D = 27² - 4* 5* 36 = 729-720=9 x1 = (27-3) /10 = 2,4 км/ч x2 = 3 км/час Задача имеет 2 решения х=2,4 км/ч и х=3 км/ч
ВвоыоФункция arcsin(x) обозначает угол, синус которого равен х. Это можно записать математически: sin(arcsin(x))=x. Справедливо и обратное: arcsin(sin(x))=x. Функция arcsin(x) - нечетная, как и обратная ей функция sin(x). Это значит, что arcsin(-x) = - arcsin(x). Поэтому arcsin(-3/4) = -arcsin(3/4). В принципе, arcsin(3/4) - это иррациональное число, выражающее некоторый вполне конкретный угол, заданный именно таким выражением. Но если тебя не устраивает такая запись, можно найти приближенное значение при инженерного калькулятора
Вверх по реке - это значит плывет против течения...
S=6 км проплыл сначала.
Скорость лодки в стоячей воде 90 м/мин = (90*60) /1000 км/час =
= 5,4 км/час
Время после отправления из N это t=4 часа 30 минут= 4,5 ч
Составим уравнение
6 / (5,4-х) + 6 / х = 4,5
6х + 6* (5,4-х) = 4,5х* (5,4-х)
324 + 45x^2 - 243x = 0
5x^2 - 27 + 36 = 0 полное квадратное уравнение.
D = 27² - 4* 5* 36 = 729-720=9
x1 = (27-3) /10 = 2,4 км/ч
x2 = 3 км/час
Задача имеет 2 решения х=2,4 км/ч и х=3 км/ч
Это можно записать математически: sin(arcsin(x))=x.
Справедливо и обратное: arcsin(sin(x))=x.
Функция arcsin(x) - нечетная, как и обратная ей функция sin(x).
Это значит, что arcsin(-x) = - arcsin(x).
Поэтому
arcsin(-3/4) = -arcsin(3/4).
В принципе, arcsin(3/4) - это иррациональное число, выражающее некоторый вполне конкретный угол, заданный именно таким выражением. Но если тебя не устраивает такая запись, можно найти приближенное значение при инженерного калькулятора