Із пунктів А і В, розташованих на відстані 50 км, назустріч один одному одночасно виїхали 2 пішоходи. Через 5 годин вони зустрілися. Після зустрічі швидкість першого пішохода, що рухався із А до В, зменшилася на 1 км/год, а другого збiльшилась на 1 км/год. Знайдіть початкову швидкість першого пішохода, якщо він прибув до пункту В на 2 години раніше, ніж другий - до пункту А.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-12)^2-4*4*(-16)=144-4*4*(-16)=144-16*(-16)=144-(-16*16)=144-(-256)=144+256=400;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(2root400-(-12))/(2*4)=(20-(-12))/(2*4)=(20+12)/(2*4)=32/(2*4)=32/8=4;
x_2=(-2root400-(-12))/(2*4)=(-20-(-12))/(2*4)=(-20+12)/(2*4)=-8/(2*4)=-8/8=-1.
2) (3у -1)² - 49 = 9y²-6y+1-49 = 9y²-6y-48 = 0
Квадратное уравнение, решаем относительно y:
Ищем дискриминант:D=(-6)^2-4*9*(-48)=36-4*9*(-48)=36-36*(-48)=36-(-36*48)=36-(-1728)=36+1728=1764;
Дискриминант больше 0, уравнение имеет 2 корня:
y_1=(2root1764-(-6))/(2*9)=(42-(-6))/(2*9)=(42+6)/(2*9)=48/(2*9)=48/18=8//3~~2.66666666666667;
y_2=(-2root1764-(-6))/(2*9)=(-42-(-6))/(2*9)=(-42+6)/(2*9)=-36/(2*9)=-36/18=-2.
Пусть меньший катет а, второй тогда а+5; гипотенуза а+10. По теореме ПИфагора а²+а²+10а+25=а²+20а+100; а²-10а-75=0, по теореме, обратной теореме Виета а₁=15; а₂=-5- не подходит по смыслу задачи, т.к. катет не может быть отрицательным. Значит, меньший катет 15, больший 20, гипотенуза 25, радиус найдем по формуле (а+в-с)/2=
(15+20-25)/2=5, здесь с-гипотенуза, а и в - катеты.
ответ 5
Можно было и так. площадь равна по Герону √(30*15*10*5)=√22500=
150, и применим формулу для радиуса, вписанной в треугольник окружности, т.е. площадь поделим на полупериметр, 150/30=5
хоть в лоб. хоть по лбу. ответ тот же. УСПЕХОВ!