Пусть они встретились в точке C( между пунктами A и B). V(A) ⇒ x км /ч ; (Скорость автомобиля выехавший из пункта A обозначаем x км /ч ) AC =V(A)*t =x км/ч* 1ч = x км ; BC =AB -AC =(100 - x) км ; V(B) = BC / t = (100 - x )км /1ч =(100 - x ) км /ч. * * * 0 < x < 100 * * * По условию задачи можем составить уравнение (100 - x ) / x - x /(100 - x ) = 5/60 * * * || BC / V(A) - AC / V(B) = Δ t || * * * ; 12( (100 -x )² - x²) = x(100 -x) ; 12(10000 -200x) =100x - x² ; x² -2500x +120000 =0 ; x =1250 ± √(1250² -120000) = 250 ± √(25²*50² -12*4²25²) =25(50± √2308) ; x₁= 25(50 + √2308) > 100 не решение x₂ = 25(50 - √2308) ≈ 25(50 - 48 ,042 )
НАВЕРНО : Δ t = 50 мин , а не 5 мин тогда : (100 - x) / x - x /(100-x) =50/60 ⇔6(10000 - 200x) =5x(100-x) ; 5x² -1700x +60000 =0 ; x = (170 ± 130) x₁ =170+130 = 300 > 100 не решения x₂ = 170 -130 = 40 (км /ч). ⇒ V(B) = (100 -40) =60 (км /ч) .
1)f(x)= x^4-2x^2-3; Найдем производную f´(x)=( x^4-2x^2-3)´=( x^4)´-2(x^2)´-(3)´=4х³-4х-0=4х³-4х=4х (х²-1)=4х (х-1)(х+1) Найдем критические точки, т. е f´(x)=0 4х (х-1)(х+1)=0 х=0 или х=1 или х=-1 -__-1___+0-1___+→Х
f´(-2)= 4*(-2)(-2-1)(-2+1)= 4*(-2)(-3)(-1)<0 ( нас интересует знак, а не число) f´(-0,5)= 4*(-0,5)(-0,5-1)(-0,5+1)= 4*(-0,5)(-1,5)*0,5>0 f´(0,5)= 4*0,5*(0,5-1)(0,5+1)=4*0,5*(-0,5)*1,5<0 f´(2)= 4*2*(2-1)(2+1)=4*2*1*3>0 В точке х=-1 производная меняет знак с – на +, значит это точка минимума; В точке х=0 производная меняет знак с +на -, значит это точка максимума; В точке х=1 производная меняет знак с – на +, значит это точка минимума; 2) f(x)= x^2+3x /x+4 Найдем производную f´(x)=( x^2+3x /x+4)´=( x^2+3x)´(х+4)- (x^2+3x)( x+4)´/ (x+4)² =(2х+3)(х+4)-(х²+3х) *1/(х+4)²=(2х²+8х+3х+12-х²-3х) /(х+4)²=(х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)² Найдем критические точки, т. е f´(x)=0 (х²+8х+12)/(х+4)²=0 х²+8х+12=0 и Х+4≠0; х≠-4 Д=8²-4*1*12=64-48=16; х₁=-8+√16/2=-2; х₂=-8-√16/2=-6 т. е. (х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)², т. к. (х+4)²>0, нас интересует только знак, поэтому рассматриваем равносильное выражение (х+2)(х+6)
+__-6___--4--2___+→Х
f´(-7)= (-7+2)(-7+6)=-5*(-1)>0 f´(-5)= (-5+2)(-5+6)=-3*1<0 f´(-3)= (-3+2)(-3+6)=-1*3<0 f´(0)= (0+2)(0+6)=2*6>0 В точке х=-6 производная меняет знак с + на - значит это точка максимума; В точке х=-4 производная не меняет знак, значит это точка не является точкой экстремума ; В точке х=-2 производная меняет знак с – на +, значит это точка минимума; Удачи!
V(A) ⇒ x км /ч ;
(Скорость автомобиля выехавший из пункта A обозначаем x км /ч )
AC =V(A)*t =x км/ч* 1ч = x км ;
BC =AB -AC =(100 - x) км ;
V(B) = BC / t = (100 - x )км /1ч =(100 - x ) км /ч. * * * 0 < x < 100 * * *
По условию задачи можем составить уравнение
(100 - x ) / x - x /(100 - x ) = 5/60 * * * || BC / V(A) - AC / V(B) = Δ t || * * * ;
12( (100 -x )² - x²) = x(100 -x) ;
12(10000 -200x) =100x - x² ;
x² -2500x +120000 =0 ;
x =1250 ± √(1250² -120000) = 250 ± √(25²*50² -12*4²25²) =25(50± √2308) ;
x₁= 25(50 + √2308) > 100 не решение
x₂ = 25(50 - √2308) ≈ 25(50 - 48 ,042 )
НАВЕРНО : Δ t = 50 мин , а не 5 мин
тогда :
(100 - x) / x - x /(100-x) =50/60 ⇔6(10000 - 200x) =5x(100-x) ;
5x² -1700x +60000 =0 ;
x = (170 ± 130)
x₁ =170+130 = 300 > 100 не решения
x₂ = 170 -130 = 40 (км /ч). ⇒ V(B) = (100 -40) =60 (км /ч) .
ответ : V(A) = 40 км /ч ; V(B) =60 км /ч .
* * * * * * *
x =( 850 ± √ (850² - 5*60000) /5 = (850± √ (722500 - 300000) /5 (850± √ (422500) /5 =(850± 650) /5 =5(170 ± 130) /5 =170 ± 130;
Найдем производную
f´(x)=( x^4-2x^2-3)´=( x^4)´-2(x^2)´-(3)´=4х³-4х-0=4х³-4х=4х (х²-1)=4х (х-1)(х+1)
Найдем критические точки, т. е f´(x)=0
4х (х-1)(х+1)=0
х=0 или х=1 или х=-1
-__-1___+0-1___+→Х
f´(-2)= 4*(-2)(-2-1)(-2+1)= 4*(-2)(-3)(-1)<0 ( нас интересует знак, а не число)
f´(-0,5)= 4*(-0,5)(-0,5-1)(-0,5+1)= 4*(-0,5)(-1,5)*0,5>0
f´(0,5)= 4*0,5*(0,5-1)(0,5+1)=4*0,5*(-0,5)*1,5<0
f´(2)= 4*2*(2-1)(2+1)=4*2*1*3>0
В точке х=-1 производная меняет знак с – на +, значит это точка минимума;
В точке х=0 производная меняет знак с +на -, значит это точка максимума;
В точке х=1 производная меняет знак с – на +, значит это точка минимума;
2) f(x)= x^2+3x /x+4
Найдем производную
f´(x)=( x^2+3x /x+4)´=( x^2+3x)´(х+4)- (x^2+3x)( x+4)´/ (x+4)² =(2х+3)(х+4)-(х²+3х) *1/(х+4)²=(2х²+8х+3х+12-х²-3х) /(х+4)²=(х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)²
Найдем критические точки, т. е f´(x)=0
(х²+8х+12)/(х+4)²=0
х²+8х+12=0 и Х+4≠0; х≠-4
Д=8²-4*1*12=64-48=16; х₁=-8+√16/2=-2; х₂=-8-√16/2=-6
т. е. (х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)², т. к. (х+4)²>0, нас интересует только знак, поэтому рассматриваем равносильное выражение (х+2)(х+6)
+__-6___--4--2___+→Х
f´(-7)= (-7+2)(-7+6)=-5*(-1)>0
f´(-5)= (-5+2)(-5+6)=-3*1<0
f´(-3)= (-3+2)(-3+6)=-1*3<0
f´(0)= (0+2)(0+6)=2*6>0
В точке х=-6 производная меняет знак с + на - значит это точка максимума;
В точке х=-4 производная не меняет знак, значит это точка не является точкой экстремума ;
В точке х=-2 производная меняет знак с – на +, значит это точка минимума;
Удачи!