За умовою задачі складіть рівняння. В одному ящику було вбразів більше
яблук ніж у другому. Коли з першого ящика взяли 27 яблук, а з другого 12 то в
другому залишилось на 23 яблука менше, ніж у першому.
6x-27=(-12)+23
6x-23+27x-12
6-12=(x+27)+23
6x-x=12+27+23
х=1 у= -2
Пошаговое объяснение:
Из второго уравнения получаем: (3х+у)= -2/ху
Подставляем в первое:
-2/ху (9х²+у²)=13
-18х/у -2у/х=13
-18х-2у²/х=13у
-18х²-2у²=13ху
18х²+13ху+2у²=0
Чтобы было проще, умножим обе части на 2!
(Приводим к формуле сокращенного умножения (х+у)²)
36х²+26ху+4у²=0
6²х²+2*6*2ху+2²у²= -2ху
(6х+2у)²= -2ху
2(3х+у)²= -ху
ху=-2(3х+у)²
Подставляем это во второе уранение:
-2(3х+у)² * (3х+у)=-2
(3х+у)³=1
3х+у=1
у=1-3х
Меняем у на вычисленное во втором уравнении:
х(1-3х) (3х+1-3х)=-2
х-3х=-2
-2х=-2
х=1
Вычисляем у подставив х=1 в выражение у=1-3х:
у=1-3
у= -2
Объяснение:
- 3 и 4.
Объяснение:
Дано.
- 12 - произведение двух чисел;
1 - сумма двух чисел.
Найти: эти числа.
Решение.
1) Обозначим числа: a и b.
Тогда можно составить систему уравнений:
a · b = - 12 уравнение (1)
a + b = 1 уравнение (2)
2) Из уравнения (2) выразим а:
а = 1 - b
и подставим в уравнение (1):
a · b = - 12
3) Находим одно из чисел:
(1 - b) · b = - 12
b - b² = - 12
- b² + b + 12 = 0
b² - b - 12 = 0
b₁,₂ = 1/2 ± √(1/4 +12) = 1/2 ± √49/4 = 1/2 ± 7/2
b₁ = 1/2 + 7/2 = 8/2 = 4
b₂ = 1/2 - 7/2 = - 6/2 = - 3
4) Из уравнения (1) находим другое число:
а₁ · 4 = - 12
а₁ = (-12) : 4 = - 3
а₂ · (-3) = - 12
а₂ = (-12) : (-3) = 4
В обоих случаях получается одна и та же пара чисел: (-3) и 4.
ответ: - 3 и 4.