Задание 2 В ателье шьют мужские костюмы. В среднем на каждые 200 пошитых костюмов, выставленных на продажу, 5 имеют брак. Какова вероятность, что Дамир купит костюм без брака? Задание 3 В среднем из 500 воздушных шаров 15 бракованные. Какова вероятность того, что наудачу взятый шар окажется целым? Задание 4 В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 20 очков.
Пусть х км/ ч скорость второго авто, тогда х+10 (км/ч) скорость первого авто. Расстояние каждый из них в 560 км, по времени составляем уравнение:
560 / х - 560/ (х+10) = 1
Приводим к общему знаменателю х(х+10) и отбрасываем его заметив, что х не=0 и х не=-10
Получаем:
560(х+10)-560х=х(х+10)
560х+5600-560х=х^2+10х
х^2+10х-5600=0
Д= 100+4*5600=22500 , 2 корня
х(1) = (-10+150)/2= 70 х(2)=(-10-150)/2 =-80 не м.б скоростью( не подходит под условие задачи)
70+10=80 км/ч скорость первого авто
ответ: 70 и 80 км/ч скорости автомобилей.
3x^ + 2x - 5 = 0
Найдем дискриминант квадратного уравнения:
D = b^ - 4ac = 22 - 4·3·(-5) = 4 + 60 = 64
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = -2 - √64 2·3 = (-2 - 8)÷6 =-10/6 = -5/3 ≈ -1.6666666666666667
x2 = -2 + √64 2·3 = (-2 + 8)÷6 =6/6 = 1
2уравнение:
5x^+3x−2=0
Коэффициенты уравнения:
a=5, b=3, c=−2
Вычислим дискриминант:
D=b2−4ac=32−4·5·(−2)=9+40=49
(D>0), следовательно это квадратное уравнение имеет 2 различных вещественных корня:
Вычислим корни:
x(1,2)=−b±√D÷2a
x1=−b+√D÷2a=−3+7÷2·5=4/10=0,4
x2=−b−√D÷2a=−3−7÷2·5=−10/10=−1
5x2+3x−2=(x−0,4)(x+1)=0
ответ: x1=0,4;x2=−1