Чтобы построить прямую надо знать две точки принадлежащие этой прямой. Для этого одну координату задают произвольно, а вторую находят из уравнения данной прямой Прямая х+5у=7 проходит через точки (7;0) и (-8;3) пусть у=0 , тогда х=7 пусть х=-8, тогда -8+5у=7 ⇒ 5у=15 ⇒ у=3
Прямая х-4у=2 проходит через точки (2;0) и (-2;-1) у=0 х=2 х=-2 у=-1
Чтобы найти координаты точки пересечения решаем систему двух уравнений: х+5у=7 х-4у=2 Вычитаем из первого уравнения второе 9у=5 у=5/9 х=7-5у=7-(25/9)=38/9=4 целых 4/9
1.log₂ (x²-2x+8)=4 ОДЗ: x²-2x+8>0 f(x)=x²-2x+8 - парабола, ветви вверх x²-2x+8=0 D=4-32=-28<0 Парабола не пересекает ось ОХ. Парабола лежит выше оси ОХ. х∈(-∞; +∞)
Прямая х+5у=7 проходит через точки (7;0) и (-8;3)
пусть у=0 , тогда х=7
пусть х=-8, тогда -8+5у=7 ⇒ 5у=15 ⇒ у=3
Прямая х-4у=2 проходит через точки (2;0) и (-2;-1)
у=0 х=2
х=-2 у=-1
Чтобы найти координаты точки пересечения решаем систему двух уравнений:
х+5у=7
х-4у=2
Вычитаем из первого уравнения второе
9у=5
у=5/9
х=7-5у=7-(25/9)=38/9=4 целых 4/9
ОДЗ: x²-2x+8>0
f(x)=x²-2x+8 - парабола, ветви вверх
x²-2x+8=0
D=4-32=-28<0
Парабола не пересекает ось ОХ.
Парабола лежит выше оси ОХ.
х∈(-∞; +∞)
x²-2x+8=2⁴
x²-2x+8-16=0
x²-2x-8=0
D=4+32=36
x₁=2-6 = -2
2
x₂=2+6 =4
2
ответ: -2; 4
2. log(x) 16 - log(x) 2=0.5
log(x) (16/2) = 0.5
8=x⁰·⁵
x=8²
x=64
ответ: 64
3. log₃ log₄ log²₃ (x-3)=0
ОДЗ: х-3>0
x>3
log₄ log²₃ (x-3)=3⁰
log₄ log₃² (x-3)=1
log²₃ (x-3)=4¹
log²₃ (x-3)=4
Пусть log₃ (x-3)=y
y² =4
y₁=2
y₂= -2
При у=2
log₃ (x-3)=2
x-3=3²
x-3=9
x=9+3
x=12 >3
При у= -2
log₃ (x-3)= -2
x-3 =3⁻²
x-3 = 1/9
x=1/9 +3
x=3 ¹/₉ >3
ответ: 3 ¹/₉; 12.