Какой формулой пользоваться значения не имеет. На фотографиях представлены решения уравнения .
Если нарисовать числовую окружность, то значение есть координата точки по оси , ведь для любой точки числовой окружности справедливо, что , т.е. точка имеет координаты .
Если провести прямую, параллельную оси через точку , то она пересечётся с числовой окружностью в каких-то точках.
Чтобы было понятнее, советую нарисовать окружность радиусом и центром в точке и отмечать всё, о чём я пишу.
Теперь рассмотрим эти точки пересечения.
Если , то пересечения будут в первой и второй четвертях.
Если , то пересечения будут в третьей и четвёртой четвертях.
Если , то пересечений тоже два и это и .
Если , то пересечение только одно, при чём точка пересечения будет и точкой касания, и равна она .
Если же , то пересечение тоже одно, тоже является точкой касания, но значение равно .
А теперь вспомним определение арксинуса. Арксинусом числа называют такой угол , что . Главное здесь то, что может быть углом только первой четверти.
Отсюда же следует, что .
Это прекрасно работает для , ведь .
Но только недавно мы проверили, что у нас может быть и не одно, а два решения. Как поступить в случае, если арксинус работает только для углов первой четверти, а нам нужно, чтобы он работал во второй? ответ прост. - это число, а - угол.
Пусть прямая пересекается с окружностью в точках в первой четверти и во второй четверти, а точку на оси мы обзовём . Рассмотрим треугольники и , в них:
- отрезок, лежащий на оси , а - хорда, параллельная оси , значит , по аксиоме о перпендикулярности прямых. Следовательно, треугольники и - прямоугольные по определению. - отрезок, лежащий на радиусе и , значит по свойству радиуса. - общая сторона.
Треугольники и равны по двум катетам. Из этого следует и то, что их соответственные углы равны. Т.е. угол и угол .
Но углы мы отсчитываем от точки , обзовём её . Тогда угол . А это угол первой четверти.
А угол - искомый угол второй четверти.
Как нам известно, все числа на числовой окружности получаются с поворота на определённый угол, пусть - этот угол. И если мы сделаем полный оборот, то мы хоть и придём в ту же самую точку, но вот число уже будет другое, ведь поворачивались мы на другой угол, равный . Таким образом, чтобы описать все числа, находящиеся в точке на окружности с координатами надо добавить , где - целое (чтобы получились полные обороты).
Вот так и получается первая формула.
Что до второй, то тут всё проще. Выводить её не буду, и так ответ уже километровый. В ней всё работает на чётности . Если - чётное, то формула трансформируется в , если нечётное, то в , ну а . Т.е. это тоже самое, только записанное в одну строчку. Использовать вторую формулу не советую. Она менее интуитивно понятная. Но если в ней разобраться, то решение уменьшается в размере, это правда.
задание 9
пусть ширина х,тогда длина х+0,25х составим уравнение
х+х+0,25х=54:2
2,25х= 27
х=27:2,25
х=12 см ширина
12+12*0,25=12+3=15 см длина
12*15= 180 кв см площадь
задание 10
1)сумма восьми чисел 5,2*8= 41,6
пусть искомое число х,составим уравнение
41,6+х=5,7*9
41,6+х=51,3
х=51,3-41,6
х= 9,7 искомое число
задание 5 ответ: х= - 0,5
задание 4 ответ: вариант 2
задание 8
/4х/=5,6
решение разбивается на отдельные случаи
случай 1
4х=5.6
х=5,6:4
х= 1,4
случай 2
- 4х=5,6
х=5,6:(-4)
х= - 1,4
ответ х=1,4;х=-1,4
Какой формулой пользоваться значения не имеет. На фотографиях представлены решения уравнения .
Если нарисовать числовую окружность, то значение есть координата точки по оси , ведь для любой точки числовой окружности справедливо, что , т.е. точка имеет координаты .
Если провести прямую, параллельную оси через точку , то она пересечётся с числовой окружностью в каких-то точках.
Чтобы было понятнее, советую нарисовать окружность радиусом и центром в точке и отмечать всё, о чём я пишу.
Теперь рассмотрим эти точки пересечения.
Если , то пересечения будут в первой и второй четвертях.
Если , то пересечения будут в третьей и четвёртой четвертях.
Если , то пересечений тоже два и это и .
Если , то пересечение только одно, при чём точка пересечения будет и точкой касания, и равна она .
Если же , то пересечение тоже одно, тоже является точкой касания, но значение равно .
А теперь вспомним определение арксинуса. Арксинусом числа называют такой угол , что . Главное здесь то, что может быть углом только первой четверти.
Отсюда же следует, что .
Это прекрасно работает для , ведь .
Но только недавно мы проверили, что у нас может быть и не одно, а два решения. Как поступить в случае, если арксинус работает только для углов первой четверти, а нам нужно, чтобы он работал во второй? ответ прост. - это число, а - угол.
Пусть прямая пересекается с окружностью в точках в первой четверти и во второй четверти, а точку на оси мы обзовём . Рассмотрим треугольники и , в них:
- отрезок, лежащий на оси , а - хорда, параллельная оси , значит , по аксиоме о перпендикулярности прямых. Следовательно, треугольники и - прямоугольные по определению. - отрезок, лежащий на радиусе и , значит по свойству радиуса. - общая сторона.Треугольники и равны по двум катетам. Из этого следует и то, что их соответственные углы равны. Т.е. угол и угол .
Но углы мы отсчитываем от точки , обзовём её . Тогда угол . А это угол первой четверти.
А угол - искомый угол второй четверти.
Как нам известно, все числа на числовой окружности получаются с поворота на определённый угол, пусть - этот угол. И если мы сделаем полный оборот, то мы хоть и придём в ту же самую точку, но вот число уже будет другое, ведь поворачивались мы на другой угол, равный . Таким образом, чтобы описать все числа, находящиеся в точке на окружности с координатами надо добавить , где - целое (чтобы получились полные обороты).
Вот так и получается первая формула.
Что до второй, то тут всё проще. Выводить её не буду, и так ответ уже километровый. В ней всё работает на чётности . Если - чётное, то формула трансформируется в , если нечётное, то в , ну а . Т.е. это тоже самое, только записанное в одну строчку. Использовать вторую формулу не советую. Она менее интуитивно понятная. Но если в ней разобраться, то решение уменьшается в размере, это правда.
Как-то так. Фу-у-у-ух. Много. Очень Много Букв.
P.S. Прости за задержку.