Из города А к город В выехал велосипедист. Спустя 44 мин вслед за ним выехал мотоциклист, скорость которого на 30 км. ч больше скорости велосипедиста. Через 36 мин после своего выезда мотоциклист, обогнав велосипедиста, был на расстоянии 7 км от него. Найдите скорость велосипедиста.
Пусть Х - скорость велосипедиста Х+30 скорость мотоциклиста
44/60*Х - путь, пройденный велосипедистом за 44 минуты. 36/60*Х - путь, пройденный велосипедистом за 36 минут. 36/60*(Х+30) - путь, пройденный мотоциклистом за 36 минут
Пусть первый в час х дет., второй х-6 в час 160:х производ. первого 160:(х-6) производ. второго 160/х=160/(х-6)-6 160(х-6)=160х-6х(х-6) 160х-960=160х-6+36х 6-36х-960=0
6x2 - 36x - 960 = 0 Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-36)^2 - 4·6·(-960) = 1296 + 23040 = 24336 Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня: x1 = (36 - √24336)/2*6 = (36 - 156)/12 = -120/12 = -10 x2 = (36 +√24336)/2*6 = (36 + 156)/12=192/12=16 дет в час первый 16-6=10 дет в час второй
Пусть
Х - скорость велосипедиста
Х+30 скорость мотоциклиста
44/60*Х - путь, пройденный велосипедистом за 44 минуты.
36/60*Х - путь, пройденный велосипедистом за 36 минут.
36/60*(Х+30) - путь, пройденный мотоциклистом за 36 минут
Составляем уравнение:
44/60*Х + 36/60*Х + 7 = 36/60*(Х+30)
44/60*Х + 36/60*Х + 7 = 36*Х/60 + 18
44/60*Х + 36/60*Х - 36/60*Х = 18-7
44/60*Х=11
44*Х=11*60
44*Х=660
Х=660/44=15 км/час.
ответ: 15 км\час.
160:х производ. первого
160:(х-6) производ. второго
160/х=160/(х-6)-6
160(х-6)=160х-6х(х-6)
160х-960=160х-6+36х
6-36х-960=0
6x2 - 36x - 960 = 0
Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-36)^2 - 4·6·(-960) = 1296 + 23040 = 24336
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (36 - √24336)/2*6 = (36 - 156)/12 = -120/12 = -10
x2 = (36 +√24336)/2*6 = (36 + 156)/12=192/12=16 дет в час первый
16-6=10 дет в час второй