Объяснение:
log(3) (5 - 5x) >= log (3) (x^2 -3x + 2) + log (3) (x+4)
log(a) b ОДЗ a>0 b>0 a≠1
итак ищем ОДЗ тело логарифма больше 0
1. 5 - 5x > 0 x < 1
2. x^2 - 3x + 2 > 0
D = 9 - 8 = 1
x12=(3+-1)/2=2 1
(х - 1)(х - 2) > 0
x∈ (-∞ 1) U (2 +∞)
3. x + 4 > 0 x > -4
ОДЗ x∈(-4 1)
так как основание логарифма больше 1, поэтому знак не меняется
5 - 5x ≥ (x^2 - 3x + 2)/(x + 4)
5(1 - x) ≥ (x - 1)(x - 2)/(x + 4)
5(x - 1) + (x - 1)(x - 2)/(x + 4) ≤ 0
(x - 1)(5(x+4)+x-2)/(x+4) ≤ 0
(х - 1)(6x + 18 )/(x+4) ≤ 0
6(х - 1)(x + 3 )/(x+4) ≤ 0
применяем метод интервалов
(-4)[-3] [1]
x ∈(-∞ -4) U [-3 1] пересекаем с ОДЗ x∈(-4 1)
ответ x∈[-3 1)
2. Исследуем функцию на монотонность и на экстремум:
Критические точки функции:
,
Определим знак производной в каждом интервале монотонности:
, точка max, так как производная изменила знак с "+" на "−",
, точка min, так как производная изменила знак с "−" на "+".
Вычислим сам экстремум функции в этих точках:
3. Исследуем функцию на выпуклость, вогнутость кривой и перегиб:
Критические точки: , , ,
Определим знак II производной в интервале кривизны:
, значит, кривая выпуклая на промежутке,
, значит, кривая вогнутая на промежутке;
Вычислим ординату точки перегиба:
4. Найдём дополнительные точки графика:
По результатам исследования строим график функции:
Пример 2. Исследовать функцию по первой и второй производной и построить её график: .
1. Область определения функции ,
точка разрыва, чтобы определить её характер, найдём правосторонний и левосторонний пределы функции в этой точке:
Значит, точка разрыва рода,
прямая вертикальная асимптота графика функции.
Найдём наклонную асимптоту графика:
где угловой коэффициент прямой найдём по формуле
Так как существует, то есть и наклонная асимптота. Вычисляем коэффициент b:
Значит, наклонная асимптота графика имеет уравнение .
, учтем правило дифференцирования
, , , , х=2,
Объяснение:
log(3) (5 - 5x) >= log (3) (x^2 -3x + 2) + log (3) (x+4)
log(a) b ОДЗ a>0 b>0 a≠1
итак ищем ОДЗ тело логарифма больше 0
1. 5 - 5x > 0 x < 1
2. x^2 - 3x + 2 > 0
D = 9 - 8 = 1
x12=(3+-1)/2=2 1
(х - 1)(х - 2) > 0
x∈ (-∞ 1) U (2 +∞)
3. x + 4 > 0 x > -4
ОДЗ x∈(-4 1)
так как основание логарифма больше 1, поэтому знак не меняется
5 - 5x ≥ (x^2 - 3x + 2)/(x + 4)
5(1 - x) ≥ (x - 1)(x - 2)/(x + 4)
5(x - 1) + (x - 1)(x - 2)/(x + 4) ≤ 0
(x - 1)(5(x+4)+x-2)/(x+4) ≤ 0
(х - 1)(6x + 18 )/(x+4) ≤ 0
6(х - 1)(x + 3 )/(x+4) ≤ 0
применяем метод интервалов
(-4)[-3] [1]
x ∈(-∞ -4) U [-3 1] пересекаем с ОДЗ x∈(-4 1)
ответ x∈[-3 1)
2. Исследуем функцию на монотонность и на экстремум:
Критические точки функции:
,
,
Определим знак производной в каждом интервале монотонности:
, точка max, так как производная изменила знак с "+" на "−",
, точка min, так как производная изменила знак с "−" на "+".
Вычислим сам экстремум функции в этих точках:
3. Исследуем функцию на выпуклость, вогнутость кривой и перегиб:
Критические точки: , , ,
Определим знак II производной в интервале кривизны:
, значит, кривая выпуклая на промежутке,
, значит, кривая вогнутая на промежутке;
Вычислим ординату точки перегиба:
4. Найдём дополнительные точки графика:
По результатам исследования строим график функции:
Пример 2. Исследовать функцию по первой и второй производной и построить её график: .
1. Область определения функции ,
точка разрыва, чтобы определить её характер, найдём правосторонний и левосторонний пределы функции в этой точке:
Значит, точка разрыва рода,
прямая вертикальная асимптота графика функции.
Найдём наклонную асимптоту графика:
где угловой коэффициент прямой найдём по формуле
Так как существует, то есть и наклонная асимптота. Вычисляем коэффициент b:
Значит, наклонная асимптота графика имеет уравнение .
2. Исследуем функцию на монотонность и на экстремум:
, учтем правило дифференцирования
Критические точки функции:
, , , , х=2,